Patents by Inventor Janice G. Pero

Janice G. Pero has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190345437
    Abstract: This present invention is in the field of producing renewable chemical feedstocks using biocatalysts that have been genetically engineered to increase their ability to convert renewable carbon resources into useful compounds. More specifically, the present invention provides a process for producing muconic acid form renewable carbon resources using a genetically modified organism.
    Type: Application
    Filed: July 10, 2019
    Publication date: November 14, 2019
    Applicant: PTTGC INNOVATION AMERICA CORPORATION
    Inventors: R. Rogers YOCUM, Wei GONG, Sudhanshu DOLE, Ryan SILLERS, Meghal GANDHI, Janice G. PERO
  • Publication number: 20150240270
    Abstract: This invention relates to the biosynthesis of organic acids in genetically modified microorganisms. More specifically, this invention provides genetically modified microorganisms that are particularly tolerant to organic acids at low pH and are capable of producing organic acids by fermentation at low pH.
    Type: Application
    Filed: September 13, 2013
    Publication date: August 27, 2015
    Applicant: MYRIANT CORPORATION
    Inventors: R. Rogers Yocum, Sudhanshu Dole, Janice G. Pero
  • Patent number: 9017976
    Abstract: This present invention relates to production of chemicals from microorganisms that have been genetically engineered and metabolically evolved. Improvements in chemical production have been established, and particular mutations that lead to those improvements have been identified. Specific examples are given in the identification of mutations that occurred during the metabolic evolution of a bacterial strain genetically engineered to produce succinic acid. This present invention also provides a method for evaluating the industrial applicability of mutations that were selected during the metabolic evolution for increased succinic acid production. This present invention further provides microorganisms engineered to have mutations that are selected during metabolic evolution and contribute to improved production of succinic acid, other organic acids and other chemicals of commercial interest.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: April 28, 2015
    Assignee: Myriant Corporation
    Inventors: Wei Gong, Sudhanshu Dole, Tammy Grabar, Andrew Christopher Collard, Janice G. Pero, R. Rogers Yocum
  • Publication number: 20150044755
    Abstract: This present invention is in the field of producing renewable chemical feedstocks using biocatalysts that have been genetically engineered to increase their ability to convert renewable carbon resources into useful compounds. More specifically, the present invention provides a process for producing muconic acid form renewable carbon resources using a genetically modified organism.
    Type: Application
    Filed: January 29, 2013
    Publication date: February 12, 2015
    Applicant: MYRIANT CORPORATION
    Inventors: R. Rogers Yocum, Wei Gong, Sudhanshu Dole, Ryan Sillers, Meghal Gandhi, Janice G. Pero
  • Publication number: 20120220000
    Abstract: This present invention relates to production of chemicals from microorganisms that have been genetically engineered and metabolically evolved. Improvements in chemical production have been established, and particular mutations that lead to those improvements have been identified. Specific examples are given in the identification of mutations that occurred during the metabolic evolution of a bacterial strain genetically engineered to produce succinic acid. This present invention also provides a method for evaluating the industrial applicability of mutations that were selected during the metabolic evolution for increased succinic acid production. This present invention further provides microorganisms engineered to have mutations that are selected during metabolic evolution and contribute to improved production of succinic acid, other organic acids and other chemicals of commercial interest.
    Type: Application
    Filed: November 17, 2010
    Publication date: August 30, 2012
    Inventors: Wei Gong, Sudhanshu Dole, Tammy Grabar, Andrew Chirstopher Collard, Janice G. Pero, R. Rogers Yocum
  • Patent number: 8232081
    Abstract: The present invention features methods of producing panto-compounds (e.g., pantothenate) using microorganisms in which the pantothenate biosynthetic pathway and/or the isoleucine-valine biosynthetic pathway and/or the coenzymeA biosynthetic pathway has been manipulated. Methods featuring ketopantoate reductase overexpressing microorganisms as well as aspartate ?-decarboxylase overexpressing microorganisms are provided. Methods of producing panto-compounds in a precursor-independent manner and in high yield are described. Recombinant microorganisms, vectors, isolated nucleic acid molecules, genes and gene products useful in practicing the above methodologies are also provided. The present invention also features a previously unidentified microbial pantothenate kinase gene, coaX, as well as methods of producing panto-compounds utilizing microorganisms having modified pantothenate kinase activity. Recombinant microorganisms, vectors, isolated coaX nucleic acid molecules and purified CoaX proteins are featured.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: July 31, 2012
    Assignee: BASF SE
    Inventors: R. Rogers Yocum, Thomas A. Patterson, Theron Hermann, Janice G. Pero
  • Patent number: 8148117
    Abstract: The present invention relates to microorganisms and processes for the efficient preparation of L-amino acids such as L-methionine. In particular, the present invention relates to microorganisms and processes in which the formation and/or accumulation of homolanthionine in the methionine pathway is reduced and/or prevented.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: April 3, 2012
    Assignee: Evonik Degussa GmbH
    Inventors: Oskar Zelder, Andrea Herold, Corinna Klopprogge, Hartwig Schröder, Stefan Haefner, Elmar Heinzle, Christoph Wittmann, Jens Kroemer, Janice G. Pero, R. Rogers Yocum, Thomas A. Patterson, Mark Williams, Theron Herman
  • Patent number: 7989187
    Abstract: The present invention features improved methods for the enhanced production of pantoate and pantothenate utilizing microorganisms having modified pantothenate biosynthetic enzyme activities and having modified methylenetetrahydrofolate (MTF) biosynthetic enzyme activities. In particular, the invention features methods for enhancing production of desired products by increasing levels of a key intermediate, ketopantoate, by increasing enzymes or substrates that contribute directly or indirectly to its synthesis. Recombinant microorganisms and conditions for culturing same are also are featured. Also featured are compositions produced by such microorganisms.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: August 2, 2011
    Assignee: BASF SE
    Inventors: Rogers R. Yocum, Thomas A. Patterson, Janice G. Pero, Theron Hermann
  • Publication number: 20100003727
    Abstract: The present invention relates to microorganisms, in particular C. glutamicum in which the formation of N5,N10-methylene-THF is increased. The present invention also relates to the use of such microorganisms for producing methionine.
    Type: Application
    Filed: February 14, 2008
    Publication date: January 7, 2010
    Inventors: Oskar Zelder, Hartwig Schröder, Corinna Klopprogge, Andrea Herold, Stefan Haefner, Thomas A. Patterson, R. Rogers Yocum, Janice G. Pero
  • Publication number: 20090298137
    Abstract: The present invention relates to microorganisms and processes for the efficient preparation of L-amino acids such as L-methionine. In particular, the present invention relates to microorganisms and processes in which the formation and/or accumulation of homolanthionine in the methionine pathway is reduced and/or prevented.
    Type: Application
    Filed: October 23, 2006
    Publication date: December 3, 2009
    Applicant: BASF AG
    Inventors: Oskar Zelder, Andreas Herold, Corinna Klopprogge, Hartwig Schröder, Stefan Haefner, Elmar Heinzle, Christoph Wittmann, Jens Kroemer, Janice G. Pero, R. Rogers Yocum, Thomas A. Patterson, Mark Williams, Theron Herman
  • Publication number: 20090298136
    Abstract: This invention relates to methionine producing recombinant microorganisms. Specifically, this invention relates to recombinant strains of Corynebacterium that produce increased levels of methionine compared to their wild-type counterparts and further to methods of generating such microorganisms.
    Type: Application
    Filed: July 18, 2006
    Publication date: December 3, 2009
    Applicant: BASF AG
    Inventors: Oskar Zelder, Stefan Haefner, Corinna Klopprogge, Hartwig Schroder, Andrea Herold, Thomas A. Patterson, Theron Hermann, R. Rogers Yocum, Mark K. William, Janice G. Pero
  • Publication number: 20090191610
    Abstract: The present invention relates to methods for the production of microorganisms with increased efficiency for methionine synthesis, microorganisms with increased efficiency for methionine synthesis, and methods for determining the optimal metabolic flux for organisms with respect to methionine synthesis.
    Type: Application
    Filed: August 18, 2006
    Publication date: July 30, 2009
    Applicant: Evonik Degussa GmbH
    Inventors: Oskar Zelder, Andrea Herold, Corinna Klopprogge, Hartwig Schroder, Stefan Haefner, Elmar Heinzle, Christoph Wittmann, Jens Kroemer, Janice G. Pero, R. Rogers Yocum, Thomas A. Patterson, Mark Williams, Theron Herman
  • Publication number: 20080166777
    Abstract: The present invention features improved methods for the enhanced production of pantoate and pantothenate utilizing microorganisms having modified pantothenate biosynthetic enzyme activities and having modified methylenetetrahydrofolate (MTF) biosynthetic enzyme activities. In particular, the invention features methods for enhancing production of desired products by increasing levels of a key intermediate, ketopantoate by enzymes that contribute to its synthesis. Recombinant microorganisms and conditions for culturing same are also are featured. Also featured are compositions produced by such microorganisms.
    Type: Application
    Filed: July 16, 2007
    Publication date: July 10, 2008
    Applicant: BASF Aktiengesellschaft
    Inventors: R. Rogers Yocum, Thomas A. Patterson, Janice G. Pero, Theron Hermann
  • Patent number: 7291489
    Abstract: The present invention features improved methods for the enhanced production of pantoate and pantothenate utilizing microorganisms having modified pantothenate biosynthetic enzyme activities and having modified methylenetetrahydrofolate (MTF) biosynthetic enzyme activities. In particular, the invention features methods for enhancing production of desired products by increasing levels of a key intermediate, ketopantoate, by increasing enzymes or substrates that contribute directly or indirectly to its synthesis. Recombinant microorganisms and conditions for culturing same are also are featured. Also featured are compositions produced by such microorganisms.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: November 6, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: R. Rogers Yocum, Thomas A. Patterson, Janice G. Pero, Theron Hermann
  • Patent number: 7244593
    Abstract: The present invention features improved methods for the enhanced production of pantoate and pantothenate utilizing microorganisms having modified pantothenate biosynthetic enzyme activities and having modified methylenetetrahydrofolate (MTF) biosynthetic enzyme activities. In particular, the invention features methods for enhancing production of desired products by increasing levels of a key intermediate, ketopantoate by enzymes that contribute to its synthesis. Recombinant microorganisms and conditions for culturing same are also are featured. Also featured are compositions produced by such microorganisms.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: July 17, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: R. Roger Yocum, Thomas A. Patterson, Janice G. Pero, Theron Hermann
  • Patent number: 7220561
    Abstract: The present invention features improved methods for producing pantoate and pantothenate utilizing microorganisms having modified pantothenate biosynthetic enzyme activities. In particular, the invention features methods for reducing byproduct formation and increasing yields and purity of desired product. Recombinant microorganisms and conditions for culturing same are also are featured. Also featured are compositions produced by such microorganisms.
    Type: Grant
    Filed: January 19, 2002
    Date of Patent: May 22, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Theron Hermann, Thomas A. Patterson, Janice G. Pero, R. Roger Yocum, Kai-Uwe Baldenius, Christine Beck
  • Patent number: 7091000
    Abstract: Vectors and recombinant bacteria for overproducing riboflavin, in which nucleic acid overproducing riboflavin biosynthetic proteins is introduced in the chromosome of the host organism, e.g. at multiple sites and in multiple copies per site. A rib operon having at least five genes is used to make such recombinant bacteria.
    Type: Grant
    Filed: February 10, 2003
    Date of Patent: August 15, 2006
    Assignee: DSM Nutritional Products, Inc.
    Inventors: John B. Perkins, Alan Sloma, Janice G. Pero, Randolph T. Hatch, Theron Hermann, Thomas Erdenberger
  • Patent number: 6841366
    Abstract: The invention generally provides the genes of the biotin biosynthetic operon of Bacillus subtilis, and closely related species thereof, and well as constructions useful for high level production of biotin.
    Type: Grant
    Filed: September 28, 1999
    Date of Patent: January 11, 2005
    Assignee: DSM IP Assets B.V.
    Inventors: Stanley Grant Bower, John B. Perkins, R. Rogers Yocum, Janice G. Pero
  • Publication number: 20040146997
    Abstract: A method is disclosed for the increased production of biotin and the biotin precursor dethiobiotin using a bacterium that produces a lysine-utilizing DAPA aminotransferase. The method involves the use of a bacterium that is either grown in the presence of lysine or deregulated for lysine biosynthesis.
    Type: Application
    Filed: January 9, 2004
    Publication date: July 29, 2004
    Applicant: ROCHE VITAMINS, INC.
    Inventors: Scott W. Van Arsdell, R. Rogers Yocum, John B. Perkins, Janice G. Pero
  • Publication number: 20040146996
    Abstract: The present invention features improved methods for the enhanced production of pantoate and pantothenate utilizing microorganisms having modified pantothenate biosynthetic enzyme activities and having modified methylenetetrahydrofolate (MTF) biosynthetic enzyme activities. In particular, the invention features methods for enhancing production of desired products by increasing levels of a key intermediate, ketopantoate, by increasing enzymes or substrates that contribute directly or indirectly to its synthesis. Recombinant microorganisms and conditions for culturing same are also are featured. Also featured are compositions produced by such microorganisms.
    Type: Application
    Filed: July 3, 2003
    Publication date: July 29, 2004
    Inventors: R. Rogers Yocum, Thomas A. Patterson, Janice G. Pero, Theron Hermann