Patents by Inventor Jarrod Eliason

Jarrod Eliason has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040130382
    Abstract: This invention is a new CMOS voltage booster (20) having an output which can be used in memories to boost the word line voltage above VDD or other voltage boosting applications. The CMOS booster includes a NMOS FET (MN1) to charge a boosting capacitor (C1) to VDD at the end of each memory access and includes a PMOS FET (MP1, MP2) to keep the voltage at the output at VDD during standby. By using this combination, the word line rise time, the size of the booster, and the power consumption during access are significantly reduced. The gate of the NMOS FET (MN1) is boosted above VDD+Vthn by a small capacitor (C2) to charge the word line boosting capacitor to VDD at the end of each memory access. The small capacitor (C2) is pre-charged to VDD by a NMOSFET (MN2) whose gate is connected to the word line boosting capacitor. The gate of each PMOS FET (MP1, MP2) is shorted to ists source to turn if off during boostenig. Ttransistor (MP3) facilitates boosting the NMOS FET (MN1) above VDD.
    Type: Application
    Filed: August 27, 2003
    Publication date: July 8, 2004
    Inventors: Xiao Hong Du, Jarrod Eliason, Yunchen Qiu, Bill Kraus
  • Publication number: 20040130381
    Abstract: This invention is a new CMOS voltage booster (20) having an output which can be used in memories to boost the word line voltage above VDD or other voltage boosting applications. One key idea in this CMOS booster is to use a NMOS FET (MN1) to charge the boosting capacitor (C1) to VDD at the end of each memory access and to use a PMOS FET (MP1, MP2) to keep the voltage at the output at VDD during standby. By using this combination, the word line rise time, the size of the booster, and the power consumption during access are significantly reduced. The gate of the NMOS FET is boosted above VDD+Vthn by a small capacitor (C2) to charge the word line boosting capacitor to VDD at the end of each memory access. The small capacitor (C2) is pre-charged to VDD by a NMOSFET (MN2) whose gate is connected to the word line boosting capacitor. The gate of the PMOS FET is shorted to its source to turn it off during boosting.
    Type: Application
    Filed: January 6, 2003
    Publication date: July 8, 2004
    Inventors: Xiao Hong Du, Jarrod Eliason, Yunchen Qiu, Bill Kraus
  • Publication number: 20040130383
    Abstract: This invention is a new CMOS voltage booster (20) having an output which can be used in memories to boost the word line voltage above VDD or other voltage boosting applications. The CMOS booster includes a NMOS FET (MN1) to charge a boosting capacitor (C1) to VDD at the end of each memory access and includes a PMOS FET (MP1, MP2) to keep the voltage at the output at VDD during standby. By using this combination, the word line rise time, the size of the booster, and the power consumption during access are significantly reduced. The gate of the NMOS FET (MN1) is boosted above VDD+Vthn by a small capacitor (C2) to charge the word line boosting capacitor to VDD at the end of each memory access. The small capacitor (C2) is pre-charged to VDD by a NMOSFET (MN2) whose gate is connected to the word line boosting capacitor. The gate of each PMOS FET (MP1, MP2) is shorted to its source to turn if off during boostenig. Transistor (MP3) facilitates boosting the NMOS FET (MN1) above VDD.
    Type: Application
    Filed: October 9, 2003
    Publication date: July 8, 2004
    Inventors: Xiao Hong Du, Jarrod Eliason, Yunchen Qiu, Bill Kraus
  • Publication number: 20040095179
    Abstract: Various logic elements such as SR flip-flops, JK flip-flops, D-type flip-flops, master-slave flip-flops, parallel and serial shift registers, and the like are converted into non-volatile logic elements capable of retaining a current output logic state even though external power is removed or interrupted through the strategic addition of ferroelectric capacitors and supporting circuitry. In each case, the building blocks of a cross-coupled sense amplifier are identified within the logic element and the basic cell is modified and/or optimized for sensing performance.
    Type: Application
    Filed: July 3, 2003
    Publication date: May 20, 2004
    Inventor: Jarrod Eliason
  • Patent number: 6650158
    Abstract: Various logic elements such as SR flip-flops, JK flip-flops, D-type flip-flops, master-slave flip-flops, parallel and serial shift registers, and the like are converted into non-volatile logic elements capable of retaining a current output logic state even though external power is removed or interrupted through the strategic addition of ferroelectric capacitors and supporting circuitry. In each case, the building blocks of a cross-coupled sense amplifier are identified within the logic element and the basic cell is modified and/or optimized for sensing performance.
    Type: Grant
    Filed: February 12, 2002
    Date of Patent: November 18, 2003
    Assignee: Ramtron International Corporation
    Inventor: Jarrod Eliason
  • Publication number: 20020113636
    Abstract: Various logic elements such as SR flip-flops, JK flip-flops, D-type flip-flops, master-slave flip-flops, parallel and serial shift registers, and the like are converted into non-volatile logic elements capable of retaining a current output logic state even though external power is removed or interrupted through the strategic addition of ferroelectric capacitors and supporting circuitry. In each case, the building blocks of a cross-coupled sense amplifier are identified within the logic element and the basic cell is modified and/or optimized for sensing performance.
    Type: Application
    Filed: February 12, 2002
    Publication date: August 22, 2002
    Inventor: Jarrod Eliason
  • Patent number: 6430093
    Abstract: A boosting circuit for a ferroelectric memory using a NAND-INVERT circuit to control one electrode of a ferroelectric boosting capacitor. The other node of the capacitor is connected to the node to be boosted, which may be coupled to a word line. The NAND circuit has two inputs, one being coupled to the word line and another for receiving a timing signal. The timing input rises to initiate the boosting operation, and falls to initiate the removal of the boosted voltage. Only the selected word line in the memory array is affected as any word line remaining at a low logic level “0” will keep the inverter output clamped low. A second embodiment adds a second N-channel transistor in series with the inverter's N-channel transistor to allow for the option of floating the inverter output if it is desired to more quickly drive the word line high during its first upward transition.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: August 6, 2002
    Assignee: Ramtron International Corporation
    Inventors: Jarrod Eliason, William F. Kraus
  • Patent number: 6275425
    Abstract: A boost circuit for a ferroelectric memory operated in a low voltage supply environment is achieved by floating a local supply voltage and using a single boost via one or more appropriately sized ferroelectric boost capacitors to elevate the local supply level to the desired boosted voltage. When boosting is not required, the local supply voltage is tied to the system external power supply through an appropriately sized PMOS transistor.
    Type: Grant
    Filed: November 16, 2000
    Date of Patent: August 14, 2001
    Assignee: Ramtron International Corporation
    Inventor: Jarrod Eliason
  • Patent number: 6141237
    Abstract: A non-volatile ferroelectric latch includes a sense amplifier having at least one input/output coupled to a bit-line node, a ferroelectric storage capacitor coupled between a plate-line node and the bit-line node, and a load element coupled to the bit-line node. The sense amplifier further includes a second input/output coupled to a second bit-line node and the latch further includes a second ferroelectric storage capacitor coupled between a second plate-line node and the second bit-sine node, and a second load element coupled to the second bit-line node. The load element includes a dynamic, switched ferroelectric capacitor a static, nonswitched ferroelectric capacitor, a linear capacitor, or even a resistive load.
    Type: Grant
    Filed: July 12, 1999
    Date of Patent: October 31, 2000
    Assignee: Ramtron International Corporation
    Inventors: Jarrod Eliason, William F. Kraus