Patents by Inventor Jason D. Myers

Jason D. Myers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180037985
    Abstract: An apparatus for containment of a molten substance using non-wetting materials comprising a crucible, and a layer of a non-wetting material deposited onto the crucible, wherein said layer of non-wetting material is deposited near the rim of the crucible and wherein the non-wetting material is deposited onto the crucible by one selected from the group consisting of RF magnetron sputtering, chemical vapor deposition, thermal spray, thermal evaporation, dip coating of precursors followed by thermal treatment, and spray coating of precursors followed by thermal treatment.
    Type: Application
    Filed: October 12, 2017
    Publication date: February 8, 2018
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jason D. Myers, Jesse A. Frantz, Guillermo R. Villalobos, Jasbinder S. Sanghera, Bryan Sadowski, Robel Y. Bekele
  • Publication number: 20180024413
    Abstract: A method for achieving alignment and optical switching of a liquid crystal (LC) layer that is deposited on chalcogenide glass (ChG). Direct brushing of ChG produces an effective LC alignment layer. Also disclosed is the related waveguide assembly for achieving alignment and optical switching of a liquid crystal (LC) layer deposited on chalcogenide glass (ChG).
    Type: Application
    Filed: July 18, 2017
    Publication date: January 25, 2018
    Inventors: Jesse A. Frantz, Jason D. Myers, Christopher M. Spillmann, Jawad Naciri, Banahalli R. Ratna, Leslie Brandon Shaw, Jasbinder S. Sanghera, Robel Y. Bekele, Jakub Kolacz
  • Patent number: 9822442
    Abstract: A method of containing molten aluminum using non-wetting materials comprising depositing MgAl2O4, or one selected from an oxide, Al2O3, nitride, AlN, BN, carbide, and SiC, onto a crucible. An apparatus for containment of molten aluminum using non-wetting materials comprising a layer of MgAl2O4, or one selected from an oxide, Al2O3, nitride, AlN, BN, carbide, and SiC, deposited onto a crucible.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: November 21, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Jason D. Myers, Jesse A. Frantz, Guillermo R. Villalobos, Jasbinder S. Sanghera, Bryan Sadowski, Robel Y. Bekele
  • Patent number: 9806209
    Abstract: A passivated iron disulfide (FeS2) surface encapsulated by an epitaxial zinc sulfide (ZnS) capping layer or matrix is provided. Also disclosed are methods for passivating the surface of crystalline iron disulfide by encapsulating it with an epitaxial zinc sulfide capping layer or matrix. Additionally disclosed is a photovoltaic (PV) device incorporating FeS2 encapsulated by ZnS.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: October 31, 2017
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Jason D. Myers, Colin C. Baker, Jasbinder S. Sanghera, Steven C. Erwin
  • Patent number: 9806208
    Abstract: A method for passivating the surface of crystalline iron disulfide (FeS2) by encapsulating it within an epitaxial zinc sulfide (ZnS) matrix. Also disclosed is the related product comprising FeS2 encapsulated by a ZnS matrix in which the sulfur atoms at the FeS2 surfaces are passivated. Additionally disclosed is a photovoltaic (PV) device incorporating FeS2 encapsulated by a ZnS matrix.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: October 31, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Jason D. Myers, Colin C. Baker, Jasbinder S. Sanghera, Steven C. Erwin
  • Publication number: 20170271531
    Abstract: A method for passivating the surface of crystalline iron disulfide (FeS2) by encapsulating it within an epitaxial zinc sulfide (ZnS) matrix. Also disclosed is the related product comprising FeS2 encapsulated by a ZnS matrix in which the sulfur atoms at the FeS2 surfaces are passivated. Additionally disclosed is a photovoltaic (PV) device incorporating FeS2 encapsulated by a ZnS matrix.
    Type: Application
    Filed: June 7, 2017
    Publication date: September 21, 2017
    Inventors: Jesse A. Frantz, Jason D. Myers, Colin C. Baker, Jasbinder S. Sanghera, Steven C. Erwin
  • Publication number: 20170271532
    Abstract: A passivated iron disulfide (FeS2) surface encapsulated by an epitaxial zinc sulfide (ZnS) capping layer or matrix is provided. Also disclosed are methods for passivating the surface of crystalline iron disulfide by encapsulating it with an epitaxial zinc sulfide capping layer or matrix. Additionally disclosed is a photovoltaic (PV) device incorporating FeS2 encapsulated by ZnS.
    Type: Application
    Filed: June 7, 2017
    Publication date: September 21, 2017
    Inventors: Jesse A. Frantz, Jason D. Myers, Colin C. Baker, Jasbinder S. Sanghera, Steven C. Erwin
  • Publication number: 20170227715
    Abstract: A system and method for creating an anti-reflective surface structure on an optical device includes a shim including a textured pattern, wherein the ship is configured to stamp the optical device with the textured pattern, a connector configured to place the optical device in proximity to the shim and apply a force to the optical device against the shim, and a laser source configured to heat the optical device by generating and applying a laser beam to the optical device when the optical device is placed in proximity to the shim.
    Type: Application
    Filed: May 27, 2016
    Publication date: August 10, 2017
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Lynda E. Busse, Jason D. Myers, Leslie Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Catalin M. Florea
  • Publication number: 20170200840
    Abstract: A composition of matter and method of forming copper indium gallium sulfide (CIGS), copper indium gallium selenide (CIGSe), or copper indium gallium telluride thin film via conversion of layer-by-layer (LbL) assembled Cu—In—Ga oxide (CIGO) nanoparticles and polyelectrolytes. CIGO nanoparticles are created via a flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH), and dispersed in aqueous solution. Multilayer films are assembled by alternately dipping a substrate into a solution of either polydopamine (PDA) or polystyrenesulfonate (PSS) and then in the CIGO-PAH dispersion to fabricate films as thick as 1-2 microns. After LbL deposition, films are oxidized to remove polymer and sulfurized, selenized, or tellurinized to convert CIGO to CIGS, CIGSe, or copper indium gallium telluride.
    Type: Application
    Filed: March 27, 2017
    Publication date: July 13, 2017
    Inventors: Walter J. Dressick, Jasbinder S. Sanghera, Woohong Kim, Colin C. Baker, Jason D. Myers, Jesse A. Frantz
  • Patent number: 9705012
    Abstract: A method for passivating the surface of crystalline iron disulfide (FeS2) by encapsulating it in crystalline zinc sulfide (ZnS). Also disclosed is the related product comprising FeS2 encapsulated by ZnS in which the sulfur atoms at the FeS2 surfaces are passivated. Additionally disclosed is a photovoltaic (PV) device incorporating FeS2 encapsulated by ZnS.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: July 11, 2017
    Assignee: The United States of America, as Represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Jason D. Myers, Colin C. Baker, Jasbinder S. Sanghera, Steven C. Erwin
  • Patent number: 9676227
    Abstract: A method for forming a wet-etchable, sacrificial lift-off layer or layers compatible with high temperature processing, a sacrificial layer, defined as consisting of a single film of one material or multiple films of multiple materials, that can tolerate high temperatures, is deposited on a substrate, called the original substrate, by sputtering or another suitable technique (e.g. evaporation, pulsed laser deposition, wet chemistry, etc.). Intermediate steps result in a lift-off layer attached to the lift-off substrate, that allow for separating the product from the original substrate.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: June 13, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Jason D. Myers, Robel Y. Bekele, Jasbinder S. Sanghera
  • Publication number: 20170145167
    Abstract: The present invention provides a method for synthesizing a new class of inorganic-organic polymeric materials. These polymers are made with a backbone comprising chalcogenide elements such as sulfur, selenium, and/or tellurium along with organic crosslinking moieties that determine its physical and optical properties. Also disclosed are the related polymeric materials. These polymers are suitable for optical applications in short wave infrared (SWIR, 1-3 ?m) and mid wave infrared (MWIR, 3-8 ?m) regions.
    Type: Application
    Filed: November 23, 2016
    Publication date: May 25, 2017
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Colin C. Baker, Darryl A. Boyd, Jason D. Myers, Vinh Q. Nguyen, Gryphon A. Drake, Woohong Kim, Steven R. Bowman, Jasbinder S. Sanghera
  • Patent number: 9608146
    Abstract: A composition of matter and method of forming copper indium gallium sulfide (CIGS), copper indium gallium selenide (CIGSe), or copper indium gallium telluride thin film via conversion of layer-by-layer (LbL) assembled Cu—In—Ga oxide (CIGO) nanoparticles and polyelectrolytes. CIGO nanoparticles are created via a flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH), and dispersed in aqueous solution. Multilayer films are assembled by alternately dipping a substrate into a solution of either polydopamine (PDA) or polystyrenesulfonate (PSS) and then in the CIGO-PAH dispersion to fabricate films as thick as 1-2 microns. After LbL deposition, films are oxidized to remove polymer and sulfurized, selenized, or tellurinized to convert CIGO to CIGS, CIGSe, or copper indium gallium telluride.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: March 28, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Walter J. Dressick, Jasbinder S. Sanghera, Woohong Kim, Colin C. Baker, Jason D. Myers, Jesse A. Frantz
  • Publication number: 20160079810
    Abstract: A system for transmitting power to a remote equipment, the system including a first laser source that generates a first laser beam; a first tracking device operatively connected to the first laser source, wherein the first tracking device controls a direction of the first laser beam; and a first photovoltaic device operatively connected to the remote equipment located remotely from the first laser source and the first tracking device, wherein the first photovoltaic device includes a semiconductor material that generates an electric current in response to absorbing the first laser beam, and wherein a first wavelength of the first laser beam is within an eye-safer range.
    Type: Application
    Filed: September 10, 2015
    Publication date: March 17, 2016
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Jason D. Myers, Steven R. Bowman, L. Brandon Shaw, Jasbinder S. Sanghera
  • Publication number: 20160076140
    Abstract: A method of containing molten aluminum using non-wetting materials comprising depositing MgAl2O4, or one selected from an oxide, Al2O3, nitride, AlN, BN, carbide, and SiC, onto a crucible. An apparatus for containment of molten aluminum using non-wetting materials comprising a layer of MgAl2O4, or one selected from an oxide, Al2O3, nitride, AlN, BN, carbide, and SiC, deposited onto a crucible.
    Type: Application
    Filed: November 24, 2015
    Publication date: March 17, 2016
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jason D. Myers, Jesse A. Frantz, Guillermo R. Villalobos, Jasbinder S. Sanghera, Bryan Sadowski, Robel Y. Bekele
  • Patent number: 9227242
    Abstract: A method of containing molten aluminum using non-wetting materials comprising depositing MgAl2O4, or one selected from an oxide, Al2O3, nitride, AlN, BN, carbide, and SiC, onto a crucible. An apparatus for containment of molten aluminum using non-wetting materials comprising a layer of MgAl2O4, or one selected from an oxide, Al2O3, nitride, AlN, BN, carbide, and SiC, deposited onto a crucible.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: January 5, 2016
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jason D. Myers, Jesse A. Frantz, Guillermo R. Villalobos, Jasbinder S. Sanghera, Bryan Sadowski, Robel Y. Bekele
  • Publication number: 20150318412
    Abstract: A microstructured ZnO coating that improves the performance of Cu(In,Ga)Se2 (CIGS) photovoltaic (PV) devices via two mechanisms; it acts an antireflective layer with superior non-normal performance to thin film anti-reflective (AR) coatings, and it scatters a large fraction of incoming light at a large angle, resulting in absorption that is on average closer to the p-n junction.
    Type: Application
    Filed: May 1, 2015
    Publication date: November 5, 2015
    Inventors: Jesse A. Frantz, Jason D. Myers, Robel Y. Bekele, Jasbinder S. Sanghera
  • Publication number: 20150295106
    Abstract: A composition of matter and method of forming copper indium gallium sulfide (CIGS), copper indium gallium selenide (CIGSe), or copper indium gallium telluride thin film via conversion of layer-by-layer (LbL) assembled Cu—In—Ga oxide (CIGO) nanoparticles and polyelectrolytes. CIGO nanoparticles are created via a flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH), and dispersed in aqueous solution. Multilayer films are assembled by alternately dipping a substrate into a solution of either polydopamine (PDA) or polystyrenesulfonate (PSS) and then in the CIGO-PAH dispersion to fabricate films as thick as 1-2 microns. After LbL deposition, films are oxidized to remove polymer and sulfurized, selenized, or tellurinized to convert CIGO to CIGS, CIGSe, or copper indium gallium telluride.
    Type: Application
    Filed: April 9, 2015
    Publication date: October 15, 2015
    Inventors: Walter J. Dressick, Jasbinder S. Sanghera, Woohong Kim, Colin C. Baker, Jason D. Myers, Jesse A. Frantz
  • Publication number: 20150270412
    Abstract: A method for passivating the surface of crystalline iron disulfide (FeS2) by encapsulating it in crystalline zinc sulfide (ZnS). Also disclosed is the related product comprising FeS2 encapsulated by ZnS in which the sulfur atoms at the FeS2 surfaces are passivated. Additionally disclosed is a photovoltaic (PV) device incorporating FeS2 encapsulated by ZnS.
    Type: Application
    Filed: March 18, 2015
    Publication date: September 24, 2015
    Inventors: Jesse A. Frantz, Jason D. Myers, Colin C. Baker, Jasbinder S. Sanghera, Steven C. Erwin
  • Publication number: 20140261668
    Abstract: An article made by: sputtering molybdenum onto a flexible glass substrate, and depositing a photovoltaic material on the molybdenum by sputtering, thermal evaporation, multi-target ternary or binary sputtering, or nanoparticle techniques.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jason D. Myers, Jesse A. Frantz, Robel Y. Bekele, Jasbinder S. Sanghera