Patents by Inventor Jason G. Fung

Jason G. Fung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240123568
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and methods of manufacturing the same. According to one or more embodiments, a method for forming or otherwise preparing a polishing article by sequentially forming a plurality of polymer layers is provided and includes: (a) dispensing a plurality of droplets of a polymer precursor composition onto a surface of a previously formed at least partially cured polymer layer, where the polymer precursor composition contains a first precursor component containing an epoxide group and a photoinitiator component which generates a photoacid when exposed to UV light, (b) at least partially curing the plurality of droplets to form an at least partially cured polymer layer, and (c) repeating (a) and (b).
    Type: Application
    Filed: June 21, 2023
    Publication date: April 18, 2024
    Inventors: Sivapackia GANAPATHIAPPAN, Boyi FU, Ashwin CHOCKALINGAM, Daniel REDFIELD, Rajeev BAJAJ, Mahendra C. ORILALL, Hou T. NG, Jason G. FUNG, Mayu YAMAMURA
  • Patent number: 11958162
    Abstract: Embodiments of the disclosure generally provide polishing pads having a composite pad body and methods for forming the polishing pads. In one embodiment, the composite pad body includes one or more first features formed from a first material or a first composition of materials, and one or more second features formed from a second material or a second composition of materials, wherein the one or more first features and the one or more second features are formed by depositing a plurality of layers comprising the first material or first composition of materials and second material or second composition of materials.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: April 16, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Rajeev Bajaj, Kasiraman Krishnan, Mahendra C. Orilall, Daniel Redfield, Fred C. Redeker, Nag B. Patibandla, Gregory E. Menk, Jason G. Fung, Russell Edward Perry, Robert E. Davenport
  • Publication number: 20240025009
    Abstract: Polishing pads having discrete and selectively arranged regions of varying porosity within a continuous phase of polymer material are provided herein. In one embodiment a polishing pad features a plurality of polishing elements each comprising a polishing surface and sidewalls extending downwardly from the polishing surface to define a plurality of channels disposed between the polishing elements, wherein one or more of the polishing elements is formed of a continuous phase of polymer material having one or more first regions comprising a first porosity and a second region comprising a second porosity, wherein the second porosity is less than the first porosity.
    Type: Application
    Filed: October 5, 2023
    Publication date: January 25, 2024
    Inventors: Aniruddh Jagdish KHANNA, Jason G. FUNG, Puneet Narendra JAWALI, Rajeev BAJAJ, Adam Wade MANZONIE, Nandan BARADANAHALLI KENCHAPPA, Veera Raghava Reddy KAKIREDDY, Joonho AN, Jaeseok KIM, Mayu YAMAMURA
  • Publication number: 20240025010
    Abstract: Embodiments herein generally relate to polishing pads and method of forming polishing pads. In one embodiment, a polishing pad having a polishing surface that is configured to polish a surface of a substrate is provided. The polishing pad includes a polishing layer. At least a portion of the polishing layer comprises a continuous phase of polishing material featuring a plurality of first regions having a first pore-feature density and a plurality of second regions having a second pore-feature density that is different from the first pore-feature density. The plurality of first regions are distributed in a pattern in an X-Y plane of the polishing pad in a side-by-side arrangement with the plurality of second regions and individual portions or ones of the plurality of first regions are interposed between individual portions or ones of the plurality of second regions.
    Type: Application
    Filed: October 3, 2023
    Publication date: January 25, 2024
    Inventors: Puneet Narendra JAWALI, Nandan BARADANAHALLI KENCHAPPA, Jason G. FUNG, Shiyan Akalanka Jayanath WEWALA GONNAGAHADENIYAGE, Rajeev BAJAJ, Adam Wade MANZONIE, Andrew Scott LAWING
  • Patent number: 11813712
    Abstract: Polishing pads having discrete and selectively arranged regions of varying porosity within a continuous phase of polymer material are provided herein. In one embodiment a polishing pad features a plurality of polishing elements each comprising a polishing surface and sidewalls extending downwardly from the polishing surface to define a plurality of channels disposed between the polishing elements, wherein one or more of the polishing elements is formed of a continuous phase of polymer material having one or more first regions comprising a first porosity and a second region comprising a second porosity, wherein the second porosity is less than the first porosity.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: November 14, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Aniruddh Jagdish Khanna, Jason G. Fung, Puneet Narendra Jawali, Rajeev Bajaj, Adam Wade Manzonie, Nandan Baradanahalli Kenchappa, Veera Raghava Reddy Kakireddy, Joonho An, Jaeseok Kim, Mayu Yamamura
  • Patent number: 11806829
    Abstract: Embodiments herein generally relate to polishing pads and method of forming polishing pads. In one embodiment, a polishing pad having a polishing surface that is configured to polish a surface of a substrate is provided. The polishing pad includes a polishing layer. At least a portion of the polishing layer comprises a continuous phase of polishing material featuring a plurality of first regions having a first pore-feature density and a plurality of second regions having a second pore-feature density that is different from the first pore-feature density. The plurality of first regions are distributed in a pattern in an X-Y plane of the polishing pad in a side-by-side arrangement with the plurality of second regions and individual portions or ones of the plurality of first regions are interposed between individual portions or ones of the plurality of second regions.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: November 7, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Puneet Narendra Jawali, Nandan Baradanahalli Kenchappa, Jason G. Fung, Shiyan Akalanka Jayanath Wewala Gonnagahadeniyage, Rajeev Bajaj, Adam Wade Manzonie, Andrew Scott Lawing
  • Patent number: 11772229
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, addition polymer precursor compounds, catalysts, and curing agents.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: October 3, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Sivapackia Ganapathiappan, Boyi Fu, Ashwin Chockalingam, Daniel Redfield, Rajeev Bajaj, Mahendra C. Orilall, Hou T. Ng, Jason G. Fung, Mayu Yamamura
  • Patent number: 11745302
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, addition polymer precursor compounds, catalysts, and curing agents.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: September 5, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Sivapackia Ganapathiappan, Boyi Fu, Ashwin Chockalingam, Daniel Redfield, Rajeev Bajaj, Mahendra C. Orilall, Hou T. Ng, Jason G. Fung, Mayu Yamamura
  • Patent number: 11738517
    Abstract: Embodiments of the present disclosure generally relate to droplet ejecting additive manufacturing systems used in the manufacturing of advanced polishing articles. In particular, embodiments herein provide methods for aligning a plurality of dispense heads of the additive manufacturing system. In one embodiment, a method for aligning a plurality of dispense heads of an additive manufacturing system includes forming an alignment test pattern comprising droplets dispensed from each of the plurality of dispense heads, comparing the placement of one or more of the droplets to determine offset distances therebetween, and generating one or more timing offsets based on the offset distances. In some embodiments, the method further includes using the timing offsets to control the dispensing of droplets from one or more of the plurality of dispense heads in a subsequent additive manufacturing process.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: August 29, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Igor Abramson, Mo Yang, Jason G. Fung, Douglas Kitajima
  • Patent number: 11724362
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: August 15, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rajeev Bajaj, Daniel Redfield, Mahendra C. Orilall, Boyi Fu, Aniruddh Jagdish Khanna, Jason G. Fung, Ashwin Chockalingam, Mayu Yamamura, Veera Raghava Reddy Kakireddy, Gregory E. Menk, Nag B. Patibandla
  • Publication number: 20220402091
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material, and structural properties, and new methods of manufacturing the same. In one or more embodiments, polishing pads with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Some embodiments may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, addition polymer precursor compounds, catalysts, and curing agents. For example, advanced polishing pads may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one polymer precursor composition followed by at least one curing step, where each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Application
    Filed: June 7, 2022
    Publication date: December 22, 2022
    Inventors: Sivapackia GANAPATHIAPPAN, Boyi FU, Ashwin CHOCKALINGAM, Daniel REDFIELD, Rajeev BAJAJ, Mahendra C. ORILALL, Hou T. NG, Jason G. FUNG, Mayu YAMAMURA
  • Patent number: 11241839
    Abstract: Embodiments disclosed herein provide methods of forming bond pad redistribution layers (RDLs) in a fan-out wafer level packaging (FOWLP) scheme using an additive manufacturing process. In one embodiment, a method of forming a redistribution layer includes positioning a carrier substrate on a manufacturing support of an additive manufacturing system, the carrier substrate including a plurality of singulated devices, detecting one or more fiducial features corresponding to each of the plurality of singulated devices, determining actual positions of each of the plurality of singulated devices relative to one or more components of the additive manufacturing system, generating printing instructions for forming a patterned dielectric layer based on the actual positions of each of the plurality of singulated devices, and forming the patterned dielectric layer using the printing instructions.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: February 8, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: William H. McClintock, Rajeev Bajaj, Jason G. Fung, Daniel Redfield
  • Publication number: 20210394333
    Abstract: Embodiments herein generally relate to polishing pads and method of forming polishing pads. In one embodiment, a polishing pad having a polishing surface that is configured to polish a surface of a substrate is provided. The polishing pad includes a polishing layer. At least a portion of the polishing layer comprises a continuous phase of polishing material featuring a plurality of first regions having a first pore-feature density and a plurality of second regions having a second pore-feature density that is different from the first pore-feature density. The plurality of first regions are distributed in a pattern in an X-Y plane of the polishing pad in a side-by-side arrangement with the plurality of second regions and individual portions or ones of the plurality of first regions are interposed between individual portions or ones of the plurality of second regions.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 23, 2021
    Inventors: Puneet Narendra JAWALI, Nandan BARADANAHALLI KENCHAPPA, Jason G. FUNG, Shiyan Akalanka Jayanath WEWALA GONNAGAHADENIYAGE, Rajeev BAJAJ, Adam Wade MANZONIE, Andrew Scott LAWING
  • Publication number: 20210394454
    Abstract: Embodiments of the present disclosure generally relate to droplet ejecting additive manufacturing systems used in the manufacturing of advanced polishing articles. In particular, embodiments herein provide methods for aligning a plurality of dispense heads of the additive manufacturing system. In one embodiment, a method for aligning a plurality of dispense heads of an additive manufacturing system includes forming an alignment test pattern comprising droplets dispensed from each of the plurality of dispense heads, comparing the placement of one or more of the droplets to determine offset distances therebetween, and generating one or more timing offsets based on the offset distances. In some embodiments, the method further includes using the timing offsets to control the dispensing of droplets from one or more of the plurality of dispense heads in a subsequent additive manufacturing process.
    Type: Application
    Filed: June 9, 2021
    Publication date: December 23, 2021
    Inventors: Igor ABRAMSON, Mo YANG, Jason G. FUNG, Douglas KITAJIMA
  • Publication number: 20210205951
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, addition polymer precursor compounds, catalysts, and curing agents.
    Type: Application
    Filed: March 22, 2021
    Publication date: July 8, 2021
    Inventors: Sivapackia GANAPATHIAPPAN, Boyi FU, Ashwin CHOCKALINGAM, Daniel REDFIELD, Rajeev BAJAJ, Mahendra C. ORILALL, Hou T. NG, Jason G. FUNG, Mayu YAMAMURA
  • Publication number: 20210187693
    Abstract: Polishing pads having discrete and selectively arranged regions of varying porosity within a continuous phase of polymer material are provided herein. In one embodiment a polishing pad features a plurality of polishing elements each comprising a polishing surface and sidewalls extending downwardly from the polishing surface to define a plurality of channels disposed between the polishing elements, wherein one or more of the polishing elements is formed of a continuous phase of polymer material having one or more first regions comprising a first porosity and a second region comprising a second porosity, wherein the second porosity is less than the first porosity.
    Type: Application
    Filed: September 29, 2020
    Publication date: June 24, 2021
    Inventors: Aniruddh Jagdish KHANNA, Jason G. FUNG, Puneet Narendra JAWALI, Rajeev BAJAJ, Adam Wade MANZONIE, Nandan BARADANAHALLI KENCHAPPA, Veera Raghava Reddy KAKIREDDY, Joonho AN, Jaeseok KIM, Mayu YAMAMURA
  • Publication number: 20210107116
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Application
    Filed: December 8, 2020
    Publication date: April 15, 2021
    Inventors: Rajeev BAJAJ, Daniel REDFIELD, Mahendra C. ORILALL, Boyi FU, Aniruddh Jagdish KHANNA, Jason G. FUNG, Ashwin CHOCKALINGAM, Mayu YAMAMURA, Veera Raghava Reddy KAKIREDDY, Gregory E. MENK, Nag B. PATIBANDLA
  • Patent number: 10953515
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, addition polymer precursor compounds, catalysts, and curing agents.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: March 23, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Sivapackia Ganapathiappan, Boyi Fu, Ashwin Chockalingam, Daniel Redfield, Rajeev Bajaj, Mahendra C. Orilall, Hou T. Ng, Jason G. Fung, Mayu Yamamura
  • Patent number: 10875145
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: December 29, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rajeev Bajaj, Daniel Redfield, Mahendra C. Orilall, Boyi Fu, Aniruddh Khanna, Jason G. Fung, Mario Cornejo, Ashwin Chockalingam, Mayu Yamamura, Veera Raghava Reddy Kakireddy, Ashavani Kumar, Venkat Hariharan, Gregory E. Menk, Fred C. Redeker, Nag B. Patibandla, Hou T. Ng, Robert E. Davenport, Amritanshu Sinha
  • Patent number: 10821573
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: November 3, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rajeev Bajaj, Daniel Redfield, Mahendra C. Orilall, Boyi Fu, Aniruddh Khanna, Jason G. Fung, Mario Cornejo, Ashwin Chockalingam, Mayu Yamamura, Veera Raghava Reddy Kakireddy, Ashavani Kumar, Venkat Hariharan, Gregory E. Menk, Fred C. Redeker, Nag B. Patibandla, Hou T. Ng, Robert E. Davenport, Amritanshu Sinha