Patents by Inventor Jason G. Fung

Jason G. Fung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200230781
    Abstract: Embodiments of the present disclosure generally relate to polishing pads, and methods for manufacturing polishing pads, which may be used in a chemical mechanical polishing (CMP) process in the manufacture of semiconductor devices. The polishing pads described herein feature a continuous polymer phase of polishing pad material comprising one or more first material domains and a plurality of second material domains. The one or more first material domains are formed of a polymerized reaction product of a first pre-polymer composition, the plurality of second material domains are formed of a polymerized reaction product of a second pre-polymer composition, the second pre-polymer composition is different from the first pre-polymer composition, and interfacial regions between the one or more first material domains and the plurality of second material are formed of a co-polymerized reaction product of the first pre-polymer composition and the second pre-polymer composition.
    Type: Application
    Filed: March 4, 2019
    Publication date: July 23, 2020
    Inventors: Ashwin CHOCKALINGAM, Jason G. FUNG, Sivapackia GANAPATHIAPPAN, Rajeev BAJAJ, Daniel REDFIELD
  • Publication number: 20200147750
    Abstract: Embodiments of the disclosure generally provide polishing pads having a composite pad body and methods for forming the polishing pads. In one embodiment, the composite pad body includes one or more first features formed from a first material or a first composition of materials, and one or more second features formed from a second material or a second composition of materials, wherein the one or more first features and the one or more second features are formed by depositing a plurality of layers comprising the first material or first composition of materials and second material or second composition of materials.
    Type: Application
    Filed: January 17, 2020
    Publication date: May 14, 2020
    Inventors: Rajeev BAJAJ, Kasiraman KRISHNAN, Mahendra C. ORILALL, Daniel REDFIELD, Fred C. REDEKER, Nag B. PATIBANDLA, Gregory E. MENK, Jason G. FUNG, Russell Edward PERRY, Robert E. DAVENPORT
  • Publication number: 20200135517
    Abstract: Chemical mechanical polishing (CMP) apparatus and methods for manufacturing CMP apparatus are provided herein. CMP apparatus may include polishing pads, polishing head retaining rings, and polishing head membranes, among others, and the CMP apparatus may be manufactured via additive manufacturing processes, such as three dimensional (3D) printing processes. The CMP apparatus may include wireless communication apparatus components integrated therein. Methods of manufacturing CMP apparatus include 3D printing wireless communication apparatus into a polishing pad and printing a polishing pad with a recess configured to receive a preformed wireless communication apparatus.
    Type: Application
    Filed: December 31, 2019
    Publication date: April 30, 2020
    Inventors: Jason G. FUNG, Rajeev BAJAJ, Daniel REDFIELD, Aniruddh Jagdish KHANNA, Mario CORNEJO, Gregory E. MENK, JOHN WATKINS
  • Publication number: 20200101657
    Abstract: A polishing article manufacturing system includes a feed section and a take-up section, the take-up section comprising a supply roll having a polishing article disposed thereon for a chemical mechanical polishing process, a print section comprising a plurality of printheads disposed between the feed section and the take-up section, and a curing section disposed between the feed section and the take-up section, the curing section comprising one or both of a thermal curing device and an electromagnetic curing device.
    Type: Application
    Filed: December 2, 2019
    Publication date: April 2, 2020
    Inventors: Kasiraman KRISHNAN, Daniel REDFIELD, Russell Edward PERRY, Gregory E. MENK, Rajeev BAJAJ, Fred C. REDEKER, Nag B. PATIBANDLA, Mahendra C. ORILALL, Jason G. FUNG
  • Patent number: 10593574
    Abstract: Chemical mechanical polishing (CMP) apparatus and methods for manufacturing CMP apparatus are provided herein. CMP apparatus may include polishing pads, polishing head retaining rings, and polishing head membranes, among others, and the CMP apparatus may be manufactured via additive manufacturing processes, such as three dimensional (3D) printing processes. The CMP apparatus may include wireless communication apparatus components integrated therein. Methods of manufacturing CMP apparatus include 3D printing wireless communication apparatus into a polishing pad and printing a polishing pad with a recess configured to receive a preformed wireless communication apparatus.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: March 17, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jason G. Fung, Rajeev Bajaj, Daniel Redfield, Aniruddh Khanna, Mario Cornejo, Gregory E. Menk, John Watkins
  • Patent number: 10537974
    Abstract: Embodiments of the disclosure generally provide polishing pads includes a composite pad body and methods for forming the polishing pads. One embodiment provides a polishing pad including a composite pad body. The composite pad body includes one or more first features formed from a first material or a first composition of materials, and one or more second features formed from a second material or a second composition of materials, wherein the one or more first features and the one or more second features are formed by depositing a plurality of layers comprising the first material or first composition of materials and second material or second composition of materials.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: January 21, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rajeev Bajaj, Kasiraman Krishnan, Mahendra C. Orilall, Daniel Redfield, Fred C. Redeker, Nag B. Patibandla, Gregory E. Menk, Jason G. Fung, Russell Edward Perry, Robert E. Davenport
  • Patent number: 10493691
    Abstract: A polishing article manufacturing system includes a feed section and a take-up section, the take-up section comprising a supply roll having a polishing article disposed thereon for a chemical mechanical polishing process, a print section comprising a plurality of printheads disposed between the feed section and the take-up section, and a curing section disposed between the feed section and the take-up section, the curing section comprising one or both of a thermal curing device and an electromagnetic curing device.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: December 3, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kasiraman Krishnan, Daniel Redfield, Russell Edward Perry, Gregory E. Menk, Rajeev Bajaj, Fred C. Redeker, Nag B. Patibandla, Mahendra C. Orilall, Jason G. Fung
  • Publication number: 20190299537
    Abstract: Embodiments disclosed herein provide methods of forming bond pad redistribution layers (RDLs) in a fan-out wafer level packaging (FOWLP) scheme using an additive manufacturing process. In one embodiment, a method of forming a redistribution layer includes positioning a carrier substrate on a manufacturing support of an additive manufacturing system, the carrier substrate including a plurality of singulated devices, detecting one or more fiducial features corresponding to each of the plurality of singulated devices, determining actual positions of each of the plurality of singulated devices relative to one or more components of the additive manufacturing system, generating printing instructions for forming a patterned dielectric layer based on the actual positions of each of the plurality of singulated devices, and forming the patterned dielectric layer using the printing instructions.
    Type: Application
    Filed: February 28, 2019
    Publication date: October 3, 2019
    Inventors: William H. MCCLINTOCK, Rajeev BAJAJ, Jason G. FUNG, Daniel REDFIELD
  • Patent number: 10399201
    Abstract: Embodiments herein relate to advanced polishing pads with tunable chemical, material and structural properties, and manufacturing methods related thereto. According to one or more embodiments herein, a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments herein thus may provide an advanced polishing pad having discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, addition polymer precursor compounds, catalysts, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one polymer precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: September 3, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Sivapackia Ganapathiappan, Boyi Fu, Ashwin Chockalingam, Daniel Redfield, Rajeev Bajaj, Mahendra C. Orilall, Hou T. Ng, Jason G. Fung, Mayu Yamamura
  • Patent number: 10391605
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, addition polymer precursor compounds, catalysts, and curing agents.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: August 27, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Sivapackia Ganapathiappan, Boyi Fu, Ashwin Chockalingam, Daniel Redfield, Rajeev Bajaj, Mahendra C. Orilall, Hou T. Ng, Jason G. Fung, Mayu Yamamura
  • Patent number: 10384330
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: August 20, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rajeev Bajaj, Daniel Redfield, Mahendra C. Orilall, Boyi Fu, Aniruddh Khanna, Jason G. Fung, Mario Cornejo, Ashwin Chockalingam, Mayu Yamamura, Veera Raghava Reddy Kakireddy, Ashavani Kumar, Venkat Hariharan, Gregory E. Menk, Fred C. Redeker, Nag B. Patibandla, Hou T. Ng, Robert E. Davenport, Amritanshu Sinha
  • Publication number: 20190202024
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, addition polymer precursor compounds, catalysts, and curing agents.
    Type: Application
    Filed: March 11, 2019
    Publication date: July 4, 2019
    Inventors: Sivapackia GANAPATHIAPPAN, Boyi FU, Ashwin CHOCKALINGAM, Daniel REDFIELD, Rajeev BAJAJ, Mahendra C. ORILALL, Hou T. NG, Jason G. FUNG, Mayu YAMAMURA
  • Publication number: 20180161954
    Abstract: Embodiments of the disclosure generally provide polishing pads includes a composite pad body and methods for forming the polishing pads. One embodiment provides a polishing pad including a composite pad body. The composite pad body includes one or more first features formed from a first material or a first composition of materials, and one or more second features formed from a second material or a second composition of materials, wherein the one or more first features and the one or more second features are formed by depositing a plurality of layers comprising the first material or first composition of materials and second material or second composition of materials.
    Type: Application
    Filed: January 22, 2018
    Publication date: June 14, 2018
    Inventors: Rajeev BAJAJ, Kasiraman KRISHNAN, Mahendra C. ORILALL, Daniel REDFIELD, Fred C. REDEKER, Nag B. PATIBANDLA, Gregory E. MENK, Jason G. FUNG, Russell Edward PERRY, Robert E. DAVENPORT
  • Publication number: 20180043613
    Abstract: A polishing article manufacturing system includes a feed section and a take-up section, the take-up section comprising a supply roll having a polishing article disposed thereon for a chemical mechanical polishing process, a print section comprising a plurality of printheads disposed between the feed section and the take-up section, and a curing section disposed between the feed section and the take-up section, the curing section comprising one or both of a thermal curing device and an electromagnetic curing device.
    Type: Application
    Filed: October 2, 2017
    Publication date: February 15, 2018
    Inventors: Kasiraman KRISHNAN, Daniel REDFIELD, Russell Edward PERRY, Gregory E. MENK, Rajeev BAJAJ, Fred C. REDEKER, Nag B. PATIBANDLA, Mahendra C. ORILALL, Jason G. FUNG
  • Patent number: 9873180
    Abstract: Embodiments of the disclosure generally provide polishing pads includes a composite pad body and methods for forming the polishing pads. One embodiment provides a polishing pad including a composite pad body. The composite pad body includes one or more first features formed from a first material or a first composition of materials, and one or more second features formed from a second material or a second composition of materials, wherein the one or more first features and the one or more second features are formed by depositing a plurality of layers comprising the first material or first composition of materials and second material or second composition of materials.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: January 23, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rajeev Bajaj, Kasiraman Krishnan, Mahendra C. Orilall, Daniel Redfield, Fred C. Redeker, Nag B. Patibandla, Gregory E. Menk, Jason G. Fung, Russell Edward Perry, Robert E. Davenport
  • Patent number: 9776361
    Abstract: A polishing article manufacturing system includes a feed section and a take-up section, the take-up section comprising a supply roll having a polishing article disposed thereon for a chemical mechanical polishing process, a print section comprising a plurality of printheads disposed between the feed section and the take-up section, and a curing section disposed between the feed section and the take-up section, the curing section comprising one or both of a thermal curing device and an electromagnetic curing device.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: October 3, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kasiraman Krishnan, Daniel Redfield, Russell Edward Perry, Gregory E. Menk, Rajeev Bajaj, Fred C. Redeker, Nag B. Patibandla, Mahendra C. Orilall, Jason G. Fung
  • Publication number: 20170203408
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, addition polymer precursor compounds, catalysts, and curing agents.
    Type: Application
    Filed: October 6, 2016
    Publication date: July 20, 2017
    Inventors: Sivapackia GANAPATHIAPPAN, Boyi FU, Ashwin CHOCKALINGAM, Daniel REDFIELD, Rajeev BAJAJ, Mahendra C. ORILALL, Hou T. NG, Jason G. FUNG, Mayu YAMAMURA
  • Publication number: 20170136603
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, addition polymer precursor compounds, catalysts, and curing agents.
    Type: Application
    Filed: November 16, 2016
    Publication date: May 18, 2017
    Inventors: Sivapackia GANAPATHIAPPAN, Boyi FU, Ashwin CHOCKALINGAM, Daniel REDFIELD, Rajeev BAJAJ, Mahendra C. ORILALL, Hou T. NG, Jason G. FUNG, Mayu YAMAMURA
  • Publication number: 20170133252
    Abstract: Chemical mechanical polishing (CMP) apparatus and methods for manufacturing CMP apparatus are provided herein. CMP apparatus may include polishing pads, polishing head retaining rings, and polishing head membranes, among others, and the CMP apparatus may be manufactured via additive manufacturing processes, such as three dimensional (3D) printing processes. The CMP apparatus may include wireless communication apparatus components integrated therein. Methods of manufacturing CMP apparatus include 3D printing wireless communication apparatus into a polishing pad and printing a polishing pad with a recess configured to receive a preformed wireless communication apparatus.
    Type: Application
    Filed: November 6, 2015
    Publication date: May 11, 2017
    Inventors: Jason G. FUNG, Rajeev BAJAJ, Daniel REDFIELD, Aniruddh KHANNA, Mario CORNEJO, Gregory E. MENK, John WATKINS
  • Publication number: 20170100817
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, addition polymer precursor compounds, catalysts, and curing agents.
    Type: Application
    Filed: October 17, 2016
    Publication date: April 13, 2017
    Inventors: Sivapackia GANAPATHIAPPAN, Boyi FU, Ashwin CHOCKALINGAM, Daniel REDFIELD, Rajeev BAJAJ, Mahendra C. ORILALL, Hou T. NG, Jason G. FUNG, Mayu YAMAMURA