Patents by Inventor Jason P. Rolland
Jason P. Rolland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12134227Abstract: A method of forming a three-dimensional object includes: providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween; filling the build region with a polymerizable liquid, irradiating the build region with light through the optically transparent member to form a solid polymer from the polymerizable liquid, and advancing said carrier away from said build surface to form said three-dimensional object from said solid polymer. The irradiating step includes projecting focused light at the build region, and the advancing step is carried out at a rate that is dependent on an average light intensity of the focused light.Type: GrantFiled: July 8, 2022Date of Patent: November 5, 2024Assignee: CARBON, INC.Inventors: Joseph M. DeSimone, Alexander Ermoshkin, Edward T. Samulski, Jason P. Rolland
-
Publication number: 20240336010Abstract: Provided herein are methods of recycling additively manufactured objects (e.g., stereolithographically produced objects), the additively manufactured objects comprising linear polyurethane, branched polyurethane, linear polyurea, branched polyurea, a copolymer thereof, or a combination thereof. Compositions comprising the same and methods of use thereof are also provided.Type: ApplicationFiled: June 18, 2024Publication date: October 10, 2024Inventors: Mu San Zhang, Kai Chen, Jason P. Rolland, Justin Poelma
-
Patent number: 12042994Abstract: Provided herein are methods of recycling additively manufactured objects (e.g., stereolithographically produced objects), the additively manufactured objects comprising linear polyurethane, branched polyurethane, linear polyurea, branched polyurea, a copolymer thereof, or a combination thereof. Compositions comprising the same and methods of use thereof are also provided.Type: GrantFiled: February 26, 2019Date of Patent: July 23, 2024Assignee: Carbon, Inc.Inventors: Mu San Zhang, Kai Chen, Jason P. Rolland, Justin Poelma
-
Publication number: 20240116251Abstract: A method of forming a three-dimensional object is carried out by: (a) providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween; (b) filling the build region with a polymerizable liquid, the polymerizable liquid comprising a mixture of: (i) a light polymerizable liquid first component, and (ii) a second solidifiable component that is different from the first component; (c) irradiating the build region with light through the optically transparent member to form a solid blocked polymer scaffold and advancing the carrier away from the build surface to form a three-dimensional intermediate having the same shape as, or a shape to be imparted to, the three-dimensional object, with the intermediate containing the second solidifiable component; and then (d) solidifying and/or curing the second solidifiable component to form from said three-dimensional intermediate the three-dimensional object.Type: ApplicationFiled: November 8, 2023Publication date: April 11, 2024Inventors: Jason P. Rolland, Kai Chen, Justin Poelma, James Goodrich, Robert Pinschmidt, Joseph M. DeSimone, Lloyd M. Robeson
-
Patent number: 11905423Abstract: A polymerizable liquid useful for the production of a three-dimensional object comprised of silicone, or a copolymer thereof, which includes at least one constituent selected from the group consisting of (i) a blocked or reactive blocked siloxane-containing prepolymer, (ii) a blocked or reactive blocked siloxane-containing polyisocyanate, and (iii) a blocked or reactive blocked siloxane-containing polyisocyanate chain extender. Methods of using the same in additive manufacturing processes such as continuous liquid interface production are also described.Type: GrantFiled: August 24, 2020Date of Patent: February 20, 2024Assignee: Carbon, Inc.Inventors: Jessica D. Drazba, Kai Chen, Jason P. Rolland
-
Patent number: 11891485Abstract: A method of forming a three-dimensional object comprised of a silicone polymer is carried out by: (a) providing a silicone dual cure resin; (b) forming a three-dimensional intermediate from that resin, where the intermediate has the shape of, or a shape to be imparted to, the three-dimensional object, and where the resin is solidified in that intermediate object by irradiating with light; and then (c) further reacting the three-dimensional intermediate to form the three-dimensional object. The silicone dual cure resin includes: (i) a light polymerizable first reactant; (ii) a photoinitiator; (iii) at least one additional reactant(s), and (iv) optionally a catalyst. At least one of the first reactant and the additional reactant(s) contains a siloxane linkage.Type: GrantFiled: November 4, 2016Date of Patent: February 6, 2024Assignee: Carbon, Inc.Inventors: Jessica D. Drazba, Jason P. Rolland
-
Publication number: 20240034000Abstract: A method of forming a three-dimensional object is described. The method may use a polymerizable liquid, or resin, useful for the production by additive manufacturing of a three-dimensional object, comprising a mixture of (i) a light polymerizable liquid first component, and (ii) a second solidifiable component that is different from said first component.Type: ApplicationFiled: May 30, 2023Publication date: February 1, 2024Inventors: Jason P. Rolland, Kai Chen, Justin Poelma, James Goodrich, Robert K. Pinschmidt, JR., Joseph M. DeSimone, Lloyd M. Robeson
-
Publication number: 20240009921Abstract: Apparatus for, and associated method of, making a three-dimensional object from a light polymerizable resin by inkjet additive manufacturing are described. The methods and apparatus employ dual precursor resins, including but not limited to dual cure resins having a first component photopolymerizable and a second component polymerizable by a mechanism different from the first component.Type: ApplicationFiled: September 26, 2023Publication date: January 11, 2024Inventor: Jason P. Rolland
-
Patent number: 11850803Abstract: A method of forming a three-dimensional object (e.g. comprised of polyurethane, polyurea, or copolymer thereof) is carried out by: (a) providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween; (b) filling the build region with a polymerizable liquid, the polymerizable liquid comprising a mixture of: (i) a light polymerizable liquid first component, and (ii) a second solidifiable component that is different from the first component; (c) irradiating the build region with light through the optically transparent member to form a solid blocked polymer scaffold and advancing the carrier away from the build surface to form a three-dimensional intermediate having the same shape as, or a shape to be imparted to, the three-dimensional object, with the intermediate containing the second solidifiable component; and then (d) contacting the three-dimensional intermediate to water to form the three-dimensional object.Type: GrantFiled: March 17, 2022Date of Patent: December 26, 2023Assignee: Carbon, Inc.Inventors: Jason P. Rolland, Kai Chen, Justin Poelma, James Goodrich, Robert Pinschmidt, Joseph M. DeSimone, Lloyd M. Robeson
-
Patent number: 11833744Abstract: A method of forming a dual cure three-dimensional object by additive manufacturing may be carried out by mixing a first precursor liquid and a second precursor liquid to produce a polymerizable liquid comprising a mixture of (i) a light polymerizable liquid first component, and (ii) a second solidifiable component (e.g., a second reactive component) that is different from the first component (e.g., that does not contain a cationic photoinitiator, or is further solidified by a different physical mechanism, or further reacted, polymerized or chain extended by a different chemical reaction). In the foregoing: (i?) at least one reactant of the second solidifiable component is contained in the first precursor liquid, and (ii?) at least one reactant or catalyst of the second solidifiable component is contained in the second precursor liquid. Once mixed, the three-dimensional object may be formed from the resin by a dual cure additive manufacturing process.Type: GrantFiled: March 17, 2022Date of Patent: December 5, 2023Assignee: Carbon, Inc.Inventors: Jason P. Rolland, Julia D. Cushen
-
Patent number: 11820072Abstract: Provided herein is a resin product useful for the production of three-dimensional objects by additive manufacturing, and methods using the same. The resin may include a reactive blocked prepolymer comprising a prepolymer blocked with reactive blocking groups; a polyol; a photoinitiator; and at least one organometallic catalyst. A packaged product useful for the production of three-dimensional objects by additive manufacturing, the product comprising a single container having a single chamber and a resin in the chamber with all components mixed together, is also provided.Type: GrantFiled: December 22, 2021Date of Patent: November 21, 2023Assignee: Carbon, Inc.Inventors: Robert K Pinschmidt, Jr., Andrew Gordon Wright, Jason P. Rolland
-
Patent number: 11814472Abstract: An epoxy dual cure resin useful for additive manufacturing of three-dimensional objects includes: (i) a photoinitiator; (ii) monomers and/or prepolymers that are polymerizable by exposure to actinic radiation or light; (iii) optionally, a light absorbing pigment or dye; (iv) an epoxy resin; (v) optionally, but in some embodiments preferably, an organic hardener co-polymerizable with the epoxy resin; (vi) optionally but preferably a dual reactive compound having substituted thereon a first reactive group reactive with said monomers and/or prepolymers that are polymerizable by exposure to actinic radiation or light, and a second reactive group reactive with said epoxy resin (e.g., an epoxy acrylate); (vii) optionally a diluent; (viii) optionally a filler; and (ix) optionally, a co-monomer and/or a co-prepolymer. Methods of using the same in additive manufacturing are also described.Type: GrantFiled: March 4, 2021Date of Patent: November 14, 2023Assignee: Carbon, Inc.Inventors: Julia D. Cushen, James Goodrich, Jason P. Rolland
-
Patent number: 11813795Abstract: Provided is a method of making a cured object having a surface coating bonded thereto, which may include: providing an intermediate object produced in an additive manufacturing process such as stereolithography by light polymerization of a dual cure resin, the resin comprising a mixture of (i) a light polymerizable first component, and (ii) a second component that is different from the first component; applying a first reactive coating composition to a surface portion of the object to form a first coating thereon; optionally, but in some embodiments preferably, applying a second reactive coating composition to the first coating to form a second coating thereon; and heating the object at (and for) a time and to a temperature sufficient to bond the first coating to the surface portion, and bond the second coating when present to the first coating, and form the cured object having a surface coating bonded thereto.Type: GrantFiled: November 18, 2021Date of Patent: November 14, 2023Assignee: Carbon, Inc.Inventors: Jason P. Rolland, Matthew S. Menyo, Joseph M. Desimone
-
Patent number: 11724445Abstract: A method of making a three-dimensional object by additive manufacturing from a blended resin including (i) at least one light polymerizable first component and, (ii) at least one, or a plurality of, second solidifiable components that are different from said first component, the method including: providing a first resin and a second resin, where the resins produce three-dimensional objects having different mechanical properties from one another when all are produced under the same process conditions; mixing the first and second resins with one another to produce the blended resin, the blended resin producing a three-dimensional object having mechanical properties intermediate between that of objects produced by the first and second resins when all are produced under the same process conditions; and dispensing the blended resin to the build region of an additive manufacturing apparatus; and then optionally but preferably producing a three-dimensional object from the blended resin in the apparatus.Type: GrantFiled: August 23, 2022Date of Patent: August 15, 2023Assignee: Carbon, Inc.Inventors: Jason P. Rolland, Courtney F. Converse, Oshin Nazarian, Matthew Panzer
-
Publication number: 20230248651Abstract: The presently disclosed subject matter describes the use of fluorinated elastomer-based materials, in particular perfluoropolyether (PFPE)-based materials, in high-resolution soft or imprint lithographic applications, such as micro- and nanoscale replica molding, and the first nano-contact molding of organic materials to generate high fidelity features using an elastomeric mold. Accordingly, the presently disclosed subject matter describes a method for producing free-standing, isolated nanostructures of any shape using soft or imprint lithography technique.Type: ApplicationFiled: April 21, 2023Publication date: August 10, 2023Applicant: THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILLInventors: JOSEPH M. DESIMONE, JASON P. ROLLAND, BENJAMIN W. MAYNOR, LARKEN E. EULISS, GINGER DENISON ROTHROCK, ANSLEY E. DENNIS, EDWARD T. SAMULSKI, R. JUDE SAMULSKI
-
Patent number: 11707893Abstract: A method of forming a three-dimensional object, wherein said three-dimensional object is an insert for use between a helmet and a human body, is described. The method may use a polymerizable liquid, or resin, useful for the production by additive manufacturing of a three-dimensional object, comprising a mixture of (i) a light polymerizable liquid first component, and (ii) a second solidifiable component that is different from said first component.Type: GrantFiled: March 17, 2022Date of Patent: July 25, 2023Assignee: Carbon, Inc.Inventors: Jason P. Rolland, Kai Chen, Justin Poelma, James Goodrich, Robert K. Pinschmidt, Jr., Joseph M. DeSimone, Lloyd M. Robeson
-
Patent number: 11642313Abstract: The presently disclosed subject matter describes the use of fluorinated elastomer-based materials, in particular perfluoropolyether (PFPE)-based materials, in high-resolution soft or imprint lithographic applications, such as micro- and nanoscale replica molding, and the first nano-contact molding of organic materials to generate high fidelity features using an elastomeric mold. Accordingly, the presently disclosed subject matter describes a method for producing free-standing, isolated nanostructures of any shape using soft or imprint lithography technique.Type: GrantFiled: November 11, 2020Date of Patent: May 9, 2023Assignee: THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILLInventors: Joseph M. DeSimone, Jason P. Rolland, Benjamin W. Maynor, Larken E. Euliss, Ginger Denison Rothrock, Ansley E. Dennis, Edward T. Samulski, R. Jude Samulski
-
Publication number: 20230095658Abstract: Provided herein is an additive manufacturing method of making a three-dimensional object comprising polyurea, comprising: (a) dispensing a one part (1K) dual cure resin into a stereolithography apparatus, the resin comprising or consisting essentially of a photoinitiator, a reactive blocked polyisocyanate, and optionally a polyepoxide, the reactive blocked polyisocyanate comprising the reaction product of a polyisocyanate and an amine or hydroxyl (meth)acrylate or (meth)acrylamide monomer blocking agent; (b) additively manufacturing from said resin an intermediate object comprising the light polymerization product of said reactive blocked polyisocyanate; (c) optionally cleaning said intermediate object; and (d) reacting said polymerization product in said intermediate with water to generate polyamine in situ that sequentially reacts with the remainder of the polymerization product to form urea linkages and hereby produce a three-dimensional object comprising polyurea.Type: ApplicationFiled: February 25, 2021Publication date: March 30, 2023Inventors: Andrew Gordon Wright, Kai Chen, Jason P. Rolland
-
Publication number: 20230001634Abstract: A method of forming a three-dimensional object is carried out by: (a) providing a carrier and an optically transparent member having a build surface, the carrier and the build surface defining a build region therebetween; (b) filling the build region with a polymerizable liquid, the polymerizable liquid including a mixture of (i) a light polymerizable liquid first component, and (ii) a second solidifiable component that is different from the first component; (c) irradiating the build region with light through the optically transparent member to form a solid polymer scaffold from the first component and also advancing the carrier away from the build surface to form a three-dimensional intermediate having the same shape as, or a shape to be imparted to, the three-dimensional object, and containing the second solidifiable component carried in the scaffold in unsolidified and/or uncured form; and (d) concurrently with or subsequent to the irradiating step, solidifying and/or curing the second solidifiable componeType: ApplicationFiled: May 10, 2022Publication date: January 5, 2023Inventors: Jason P. Rolland, Kai Chen, Justin Poelma, James Goodrich, Robert Pinschmidt, Joseph M. DeSimone, Lloyd M. Robeson
-
Publication number: 20220402197Abstract: A method of making a three-dimensional object by additive manufacturing from a blended resin including (i) at least one light polymerizable first component and, (ii) at least one, or a plurality of, second solidifiable components that are different from said first component, the method including: providing a first resin and a second resin, where the resins produce three-dimensional objects having different mechanical properties from one another when all are produced under the same process conditions; mixing the first and second resins with one another to produce the blended resin, the blended resin producing a three-dimensional object having mechanical properties intermediate between that of objects produced by the first and second resins when all are produced under the same process conditions; and dispensing the blended resin to the build region of an additive manufacturing apparatus; and then optionally but preferably producing a three-dimensional object from the blended resin in the apparatus.Type: ApplicationFiled: August 23, 2022Publication date: December 22, 2022Inventors: Jason P. Rolland, Courtney F. Converse, Oshin Nazarian, Matthew Panzer