Patents by Inventor Jason Palmer

Jason Palmer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210261150
    Abstract: Systems and methods for managing speed thresholds for a fleet of vehicles are disclosed. Input is used to provide associations between particular weather-relation conditions (such as rain) and arithmetic operations, that may be used to determine a current speed threshold as a function of a local posted speed limit at the current location of a vehicle. The current speed threshold is subsequently used to detect whether vehicles are exceeding the current speed threshold.
    Type: Application
    Filed: April 20, 2021
    Publication date: August 26, 2021
    Inventors: Samuel Thomas Kruse, David Wagstaff, Jason Palmer
  • Publication number: 20210223073
    Abstract: Flow meters may include a body defining a fluid channel therein. At least one structure may be positioned within the fluid channel, and fixed relative to the body, that is shaped and positioned to produce a flow induced vibration that varies according to a rate of fluid flow through the fluid channel. A method of measuring a fluid flow rate may include directing a fluid over a first structure located in a first channel, and producing a first flow induced vibration that varies according to a rate of fluid flow in a first channel with the first structure. The method may further include measuring the vibration of a remote structure coupled to the first channel, and determining the rate of fluid flow in the first channel from the measured vibration.
    Type: Application
    Filed: December 10, 2020
    Publication date: July 22, 2021
    Applicant: Battelle Energy Alliance, LLC
    Inventors: Piyush Sabharwall, Paul Marotta, Richard Christensen, Nicholas Williams, Jason Palmer
  • Patent number: 11069257
    Abstract: This disclosure relates to a system and method for detecting vehicle events and generating review criteria based on the detected vehicle events. Some or all of the system may be installed in a vehicle and/or be otherwise coupled with a vehicle. The system may include one or more sensors configured to generate output signals conveying information related to the vehicle and/or multiple video capture devices configured to acquire visual output information representing a vehicle environment. In some implementations, the system may determine a vehicle event type based on the information conveyed by the output signals. The system may generate review criteria, which correspond to the vehicle event, based on the vehicle event type and the fields of view corresponding to the video capture devices.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: July 20, 2021
    Assignee: SmartDrive Systems, Inc.
    Inventors: Jason Palmer, Slaven Sljivar, Mark Freitas, Daniel A. Deninger, Jeffrey Todd Griswold
  • Publication number: 20210201600
    Abstract: This disclosure relates to a distributed data center that includes resources carried by a fleet of vehicles. The system includes sensors configured to generate output signals conveying information related to the vehicles. The system may detect vehicle events based on the information conveyed by the output signals. The system includes a remote computing server configured to present a user interface to a user. Through the user interface, the user may query information from one or more vehicles in the fleet. The distributed query is transmitted to individual vehicles, and results are locally processed in accordance with response constraints and subsequently transmitted back to the remote computing server for presentation to the user.
    Type: Application
    Filed: February 26, 2021
    Publication date: July 1, 2021
    Inventors: Reza Ghanbari, Nicholas Shayne Brookins, David Forney, Mark Freitas, Daniel Andrew Deninger, Jeffrey Griswold, Jason Palmer
  • Publication number: 20210174608
    Abstract: This disclosure relates to a distributed data center that includes resources carried by a fleet of vehicles. Individual vehicles carry sensors configured to generate output signals conveying information related to the vehicles and/or the surroundings of the vehicles. The system includes a remote computing server configured to obtain executable code from a user, and subsequently transmit the executable code to individual vehicles in the fleet. Individual vehicles locally execute the executable code to produce local results, and subsequently transfer the results to the remote computing server for presentation to the user.
    Type: Application
    Filed: February 12, 2021
    Publication date: June 10, 2021
    Inventors: Reza Ghanbari, Daniel Andrew Deninger, Mark Freitas, Nicholas Shayne Brookins, Slaven Sljivar, Jason Palmer, Jeffrey Griswold, David Forney
  • Patent number: 11021169
    Abstract: Systems and methods to determine posted speed limits for vehicles and modify a centralized database of posted speed limits may manage the centralized database, receive, from a fleet of vehicles, requests to modify speed limits associated with roads, and modify the centralized database in accordance with the received requests for modification. Individual vehicles may compare a posted speed limit for a particular road as identified based on road-side image information with a previously stored speed limit from the centralized database for the same road in order to detect a discrepancy and transmit a request for a modification.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: June 1, 2021
    Assignee: SmartDrive Systems, Inc.
    Inventors: Jeffrey Griswold, Mark Freitas, Daniel Andrew Deninger, Alekh Vaidya, Nicholas Shayne Brookins, Jason Palmer, Reza Ghanbari
  • Patent number: 10988146
    Abstract: Systems and methods for managing speed thresholds for a fleet of vehicles are disclosed. Input is used to provide associations between particular weather-relation conditions (such as rain) and arithmetic operations, that may be used to determine a current speed threshold as a function of a local posted speed limit at the current location of a vehicle. The current speed threshold is subsequently used to detect whether vehicles are exceeding the current speed threshold.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: April 27, 2021
    Assignee: SmartDrive Systems, Inc.
    Inventors: Samuel Thomas Kruse, David Wagstaff, Jason Palmer
  • Publication number: 20210086690
    Abstract: Systems and methods for verifying whether vehicle operators are paying attention are disclosed. Exemplary implementations may: generate output signals conveying information related to a first vehicle operator; make a first type of determination of at least one of an object on which attention of the first vehicle operator is focused and/or a direction in which attention of the first vehicle operator is focused; make a second type of determination regarding fatigue of the first vehicle operator; make a third type of determination of at least one of a distraction level of the first vehicle operator and/or a fatigue level of the first vehicle operator; and effectuate a notification regarding the third type of determination to at least one of the first vehicle operator and/or a remote computing server.
    Type: Application
    Filed: October 16, 2020
    Publication date: March 25, 2021
    Inventors: Juan Carlos Mauricia, Daniel Andrew Deninger, Reza Ghanbari, Mark Freitas, Jeffrey Griswold, David Forney, Nicholas Shayne Brookins, Jason Palmer
  • Publication number: 20210074156
    Abstract: This disclosure relates to a distributed data center that includes resources carried by a fleet of vehicles. The system includes sensors configured to generate output signals conveying information related to the vehicles and/or the surroundings of vehicles. The system includes a remote computing server configured to maintain map data and distribute it to the fleet, including local map data to individual vehicles pertaining to their surroundings. Individual vehicles may compare the local map data with the information related to their individual surroundings. Based on such comparisons, individual vehicles may detect discrepancies between the local map data and the information related to their individual surroundings. The remote computing server may modify and/or update the map data based on the detected discrepancies.
    Type: Application
    Filed: October 26, 2020
    Publication date: March 11, 2021
    Inventors: Nicholas Shayne Brookins, Reza Ghanbari, David Forney, Mark Freitas, Daniel Andrew Deninger, Jeffrey Griswold, Jason Palmer
  • Patent number: 10937255
    Abstract: This disclosure relates to a distributed data center that includes resources carried by a fleet of vehicles. The system includes sensors configured to generate output signals conveying information related to the vehicles. The system may detect vehicle events based on the information conveyed by the output signals. The system includes a remote computing server configured to present a user interface to a user. Through the user interface, the user may query information from one or more vehicles in the fleet. The distributed query is transmitted to individual vehicles, and results are locally processed in accordance with response constraints and subsequently transmitted back to the remote computing server for presentation to the user.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: March 2, 2021
    Assignee: SmartDrive Systems, Inc.
    Inventors: Reza Ghanbari, Nicholas Shayne Brookins, David Forney, Mark Freitas, Daniel Andrew Deninger, Jeffrey Griswold, Jason Palmer
  • Publication number: 20210056775
    Abstract: This disclosure relates to a system configured to generate and provide timely vehicle event information for a fleet of vehicles including at least a first vehicle. Individual vehicles detect vehicle events and transmit related information to a remote computing server. The remote computing server determines whether the detected vehicles events are relevant to add to a set of vehicle events scenarios. For example, if a particular vehicle event is duplicative of a previous vehicle event, if may not need to be added. The newest vehicles events may be reported at certain intervals, in particular if they are indicative of a trend.
    Type: Application
    Filed: October 26, 2020
    Publication date: February 25, 2021
    Inventors: Mark Freitas, Jason Palmer, Reza Ghanbari, Nicholas Shayne Brookins, Slaven Sljivar, Barry James Parshall, Daniel Andrew Deninger
  • Patent number: 10930093
    Abstract: This disclosure relates to a system configured to generate synchronized electronic vehicle event records. The synchronized vehicle event records may include vehicle operation information, video information, and/or other information. The synchronized electronic vehicle event records may be generated remotely (e.g., “in the cloud”) from a vehicle. The system is configured to communicate with factory installed and/or other (e.g., third party) vehicle systems to generate the vehicle event information and/or cause other information relevant to a particular vehicle event to be transmitted in addition to the vehicle event information. By communicating with existing vehicle systems and causing these systems to transmit information related to vehicle events themselves, and generating the synchronized electronic vehicle event records remotely from a vehicle the system reduces the amount and/or cost of aftermarket equipment that must be installed in a vehicle for vehicle event monitoring.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: February 23, 2021
    Assignee: SmartDrive Systems, Inc.
    Inventors: Jason Palmer, Slaven Sljivar, Daniel A. Deninger, Alekh Vaidya, Jeffrey Griswold, Mark Freitas
  • Patent number: 10930092
    Abstract: This disclosure relates to a distributed data center that includes resources carried by a fleet of vehicles. Individual vehicles carry sensors configured to generate output signals conveying information related to the vehicles and/or the surroundings of the vehicles. The system includes a remote computing server configured to obtain executable code from a user, and subsequently transmit the executable code to individual vehicles in the fleet. Individual vehicles locally execute the executable code to produce local results, and subsequently transfer the results to the remote computing server for presentation to the user.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: February 23, 2021
    Assignee: SmartDrive Systems, Inc.
    Inventors: Reza Ghanbari, Daniel Andrew Deninger, Mark Freitas, Nicholas Shayne Brookins, Slaven Sljivar, Jason Palmer, Jeffrey Griswold, David Forney
  • Patent number: 10921487
    Abstract: Systems and methods for detecting a sitting duck scenario of a vehicle on or near a road are disclosed. The current location and speed of the vehicle are used for different comparisons and/or determinations, including a comparison to road-specific information to determine whether the vehicle is in a particular proximity of a highway, and a determination whether the vehicle has been stationary continuously for at least a specified duration. Additional comparisons and/or determinations may be used. If such an occurrence has been detected, one or more notifications are generated, and provided to one or more of the vehicle operator and/or a remote computing server.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: February 16, 2021
    Assignee: SmartDrive Systems, Inc.
    Inventors: David Wagstaff, Samuel Thomas Kruse, Jason Palmer
  • Publication number: 20210043016
    Abstract: This disclosure relates to a system and method for detecting vehicle events. The system includes sensors configured to generate output signals conveying information related to the vehicle. The system detects a vehicle event based on the information conveyed by the output signals. The system selects a subset of sensors based on the detected vehicle event. The system captures and records information from the selected subset of sensors. The system transfers the recorded information to a remote server or provider.
    Type: Application
    Filed: October 26, 2020
    Publication date: February 11, 2021
    Inventors: Jason PALMER, Mark FREITAS, Daniel A. DENINGER, David Forney, Slaven SLJIVAR, Alekh Vaidya, Jeffrey Griswold
  • Publication number: 20210024077
    Abstract: This disclosure relates to a system and method for determining responsiveness of a driver of a vehicle to feedback regarding driving behaviors. The system may include a sensor configured to generate output signals conveying first driving behavior information, which may characterize operation of the vehicle by the driver. The system may include one or more processors configured to obtain the first driving behavior information. The one or more processors may effectuate provision of feedback defined by feedback information based on the first driving behavior. The sensor may be configured to output signals conveying second driving behavior information, which may characterize operation of the vehicle by the driver during and/or subsequent to the provision of the feedback. The one or more processors may be configured to obtain the second driving behavior information and assess responsiveness of the driver to the feedback based on the second driving behavior information.
    Type: Application
    Filed: October 2, 2020
    Publication date: January 28, 2021
    Inventors: Jason Palmer, Mark Freitas, Daniel A. Deninger, David Forney, Slaven Sljivar, Alekh Vaidya, Jeffrey Griswold
  • Publication number: 20200348692
    Abstract: Systems and methods for creating and using risk profiles for management of a fleet of vehicles are disclosed. The risk profiles characterize values representing likelihoods of occurrences of vehicle events, based on previously detected vehicle events. Exemplary implementations may: obtain vehicle event information for vehicle events that have been detected by the fleet of vehicles; aggregate the vehicle event information for multiple ones of the events to create one or more of a first risk profile, a second risk profile and/or a third risk profile; obtain a point of origin for and a target destination of a particular vehicle; determine a set of routes from the point of origin to the target destination; determine individual values representing likelihoods of occurrences of vehicle events along individual routes in the set of routes; select the first route from the set of routes; and provide the selected first route to the particular vehicle.
    Type: Application
    Filed: May 1, 2019
    Publication date: November 5, 2020
    Inventors: Reza Ghanbari, Nicholas Shayne Brookins, David Forney, Jason Palmer, Mark Freitas
  • Publication number: 20200348675
    Abstract: Systems and methods for using risk profiles for creating and deploying new vehicle event definitions to a fleet of vehicles are disclosed. Exemplary implementations may: obtain a first risk profile, a second risk profile, and vehicle event characterization information; select individual ones of the previously detected vehicle events that have one or more characteristics in common; determine circumstances for at least a predefined period prior to occurrences of the selected vehicle events; create a new vehicle event definition based on the determined set of circumstances; distribute the new vehicle event definition to individual vehicles in the fleet of vehicles; and receive additional vehicle event information from the individual vehicles in the fleet of vehicles.
    Type: Application
    Filed: May 1, 2019
    Publication date: November 5, 2020
    Inventors: Nicholas Shayne Brookins, David Forney, Reza Ghanbari, Jason Palmer, Mark Freitas
  • Publication number: 20200348693
    Abstract: Systems and methods for using risk profiles for fleet management of a fleet of vehicles are disclosed. Fleet management may include determining the performance levels of particular vehicle operators. The risk profiles characterize values representing likelihoods of occurrences of vehicle events. The values are based on vehicle event information for previously detected vehicle events. Exemplary implementations may: receive, from a particular vehicle, particular vehicle event information for particular vehicle events that have been detected by the particular vehicle; determine one or more metrics that quantify a performance level of the particular vehicle operator, based on the risk profiles; compare the one or more metrics for the particular vehicle operator with aggregated metrics that quantify performance levels of a set of vehicle operators; and store, transfer, and/or present results of the comparison.
    Type: Application
    Filed: May 1, 2019
    Publication date: November 5, 2020
    Inventors: David Forney, Nicholas Shayne Brookins, Reza Ghanbari, Jason Palmer, Mark Freitas
  • Patent number: 10818109
    Abstract: This disclosure relates to a system and method for detecting vehicle events. The system includes sensors configured to generate output signals conveying information related to the vehicle. The system detects a vehicle event based on the information conveyed by the output signals. The system selects a subset of sensors based on the detected vehicle event. The system captures and records information from the selected subset of sensors. The system transfers the recorded information to a remote server or provider.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: October 27, 2020
    Assignee: SmartDrive Systems, Inc.
    Inventors: Jason Palmer, Mark Freitas, Daniel A. Deninger, David Forney, Slaven Sljivar, Alekh Vaidya, Jeffrey Griswold