Patents by Inventor Jason Pelc

Jason Pelc has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10107962
    Abstract: In the examples provided herein, an apparatus has a mode converter coupled to a first waveguide to convert light propagating in a first set of spatial modes along the first waveguide to a second set of spatial modes. The apparatus also has a second waveguide coupled to the mode converter, where the second set of spatial modes propagate along the second waveguide in a first direction away from the mode converter. Further, the apparatus includes a coupler to couple a portion of the light propagating in the second set of spatial modes out of the second waveguide. Additionally, the second waveguide has an end facet away from the mode converter to reduce back reflection of the light not coupled out of the second waveguide to the first waveguide.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: October 23, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventor: Jason Pelc
  • Patent number: 10088634
    Abstract: One example includes an optical port-shuffling module. The module includes a plurality of inputs to receive a respective plurality of optical signals. The module also includes a plurality of outputs to provide the respective plurality of optical signals from the optical port-shuffling module. The module further includes a plurality of total-internal-reflection (TIR) mirrors arranged in optical paths of at least a portion of the plurality of optical signals to reflect the at least a portion of the plurality of optical signals to at least a portion of the plurality of outputs to shuffle the plurality of optical signals between the plurality of inputs and the plurality of outputs.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: October 2, 2018
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Jason Pelc, Charles M Santori, Marco Fiorentino, Sr., Raymond G Beausoleil, Terrel L Morris
  • Publication number: 20180267937
    Abstract: In example implementations, an apparatus includes a plurality of nodes, a pump coupled to the plurality of nodes and a connection network. In one example, each one of the plurality of nodes may store a value. The pump provides energy to the each one of the plurality of nodes. The connection network may include a two dimensional array of elements, wherein each group of the two dimensional array of elements is in communication with a respective one of the plurality of nodes, wherein the connection network may be tuned with parameters associated with encoding of an Ising problem. The connection network may process the value stored in each one of the plurality of nodes. The Ising problem may be solved by the value stored in each one of the plurality of nodes at a minimum energy level.
    Type: Application
    Filed: September 8, 2015
    Publication date: September 20, 2018
    Inventors: Jason PELC, Thomas VAN VAERENBERGH, Raymond G BEAUSOLEIL
  • Publication number: 20180189425
    Abstract: A photonic circuit design system includes a photonic circuit design tool to facilitate user inputs to generate a photonic circuit netlist comprising a photonic design component of a photonic circuit design. The system includes a memory system to store the photonic circuit netlist and a component library comprising a plurality of predetermined photonic design components from which the photonic design component is selected. The component library further includes physical data associated with physical characteristics of the plurality of predetermined photonic design components.
    Type: Application
    Filed: July 8, 2015
    Publication date: July 5, 2018
    Inventors: Thomas VAN VAERENBERGH, Jason PELC
  • Publication number: 20180106967
    Abstract: In the examples provided herein, an optical logic gate includes multiple couplers, where no more than two types of couplers are used in the optical logic gate, and further wherein the two types of couplers consist of: a 3-dB coupler and a weak coupler with a given transmission-to-reflection ratio. The optical logic gate also includes a first resonator, wherein the first resonator comprises a photonic crystal resonator or a nonlinear ring resonator, wherein in operation, the first resonator has a dedicated continuous wave input to bias a complex amplitude of a total field input to the first resonator such that the total field input is either above or below a nonlinear switching threshold of the first resonator, where the optical logic gate is an integrated photonic circuit.
    Type: Application
    Filed: May 8, 2015
    Publication date: April 19, 2018
    Inventors: Charles M. Santori, Jason Pelc, Ranojoy Bose, Cheng Li, Raymond G Beausoleil
  • Publication number: 20180081388
    Abstract: Examples described herein relate to concurrently performing operations on optical signals. In an example, a method includes providing, to an optical circuit, a first plurality of signals having a first optical property and encoding a first vector. A second plurality of signals is provided to the circuit that encodes a second vector and has a second optical property that is different from the first optical property. A first attribute-dependent operation is performed on the first plurality of signals via the circuit to perform a first matrix multiplication operation on the first vector, and concurrently, a second attribute-dependent operation is performed on the second plurality of signals to perform a second matrix multiplication operation on the second vector. The first matrix multiplication operation and the second matrix multiplication operation are different based on the first optical property being different from the second optical property.
    Type: Application
    Filed: September 22, 2016
    Publication date: March 22, 2018
    Inventors: David Kielpinski, Jason Pelc, Thomas Van Vaerenbergh, Nikolas Tezak, Gabriel Joe Mendoza, Raymond G. Beausoleil
  • Publication number: 20180024292
    Abstract: One example includes an apparatus that includes a plurality of input/output (I/O) ports and a body portion. The plurality of I/O ports can be arranged at a plurality of peripheral surfaces of the body portion. The body portion includes a solid dielectric material having a substantially constant index of refraction. The body portion also includes parallel planar surfaces spaced apart by and bounded by the plurality of peripheral surfaces. The solid dielectric material in the body portion can be writable via a laser-writing process to form an optical waveguide extending between a set of the plurality of I/O ports.
    Type: Application
    Filed: January 28, 2015
    Publication date: January 25, 2018
    Inventors: Raymond G BEAUSOLEIL, Marco FIORENTINO, Jason PELC, Charles M SANTORI, Terrel L MORRIS
  • Publication number: 20180011251
    Abstract: In the examples provided herein, an apparatus has a mode converter coupled to a first waveguide to convert light propagating in a first set of spatial modes along the first waveguide to a second set of spatial modes. The apparatus also has a second waveguide coupled to the mode converter, where the second set of spatial modes propagate along the second waveguide in a first direction away from the mode converter. Further, the apparatus includes a coupler to couple a portion of the light propagating in the second set of spatial modes out of the second waveguide. Additionally, the second waveguide has an end facet away from the mode converter to reduce back reflection of the light not coupled out of the second waveguide to the first waveguide.
    Type: Application
    Filed: February 20, 2015
    Publication date: January 11, 2018
    Inventor: Jason PELC
  • Publication number: 20170336569
    Abstract: One example includes an optical port-shuffling module. The module includes a plurality of inputs to receive a respective plurality of optical signals. The module also includes a plurality of outputs to provide the respective plurality of optical signals from the optical port-shuffling module. The module further includes a plurality of total-internal-reflection (TIR) mirrors arranged in optical paths of at least a portion of the plurality of optical signals to reflect the at least a portion of the plurality of optical signals to at least a portion of the plurality of outputs to shuffle the plurality of optical signals between the plurality of inputs and the plurality of outputs.
    Type: Application
    Filed: October 23, 2014
    Publication date: November 23, 2017
    Inventors: Jason PELC, Charles M SANTORI, Marco FIORENTINO, Sr., Raymond G BEAUSOLEIL, Terrel L MORRIS
  • Publication number: 20170317745
    Abstract: In example implementations, an optical gate is provided. The optical gate receives at least one optical signal via a waveguide of an optical memory gate. The optical gate compares a wavelength of the at least one optical signal to a resonant wavelength associated with a resonator. When the wavelength of the at least one optical signal matches the resonant wavelength, a value that is stored in the resonator is read out via the at least one optical signal. Then, the at least one optical signal with the value that is read out is transmitted out of the optical gate.
    Type: Application
    Filed: April 27, 2016
    Publication date: November 2, 2017
    Inventors: Nikolas A. Tezak, David Kielpinski, Jason Pelc, Thomas Van Vaerenbergh, Ranojoy Bose, Raymond G. Beausoleil
  • Publication number: 20170315298
    Abstract: One example includes an optical fiber interface. The interface includes a first substrate comprising a pair of opposing surfaces. The substrate includes an opening extending therethrough that defines an inner periphery. One surface of the opposing surfaces of the first substrate can be configured to be bonded to a given surface of a second substrate. The interface also includes a plurality of optical fibers secured to the other opposing surface of the first substrate and extending inwardly from a plurality of surfaces of the inner periphery at fixed locations to align the set of optical fibers to optical inputs/outputs (I/O) of an optical system chip that is coupled to the given surface of the second substrate and received through the opening.
    Type: Application
    Filed: October 23, 2014
    Publication date: November 2, 2017
    Applicant: Hewlett Packard Enterprise Development LP
    Inventors: Terrel L MORRIS, Raymond G BEAUSOLEIL, Jason PELC, SR., Marco FIORENTINO, Charles M SANTORI, Michael W CUMBIE