Patents by Inventor Jason Stephens

Jason Stephens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8546172
    Abstract: Provided herein are methods of polishing, cleaning and texturing back contacts of thin-film solar cells. According to various embodiments, the methods involve irradiating sites on the back contact with laser beams to remove contaminants and/or smooth the surface of the back contact. The back contact, e.g., a molybdenum, copper, or niobium thin-film, is smoothed prior to deposition of the absorber and other thin-films of the photovoltaic stack. In certain embodiments, laser polishing of the back contact is used to enhance the diffusion barrier characteristics of the back contact layer, with all or a surface layer of the back contact becoming essentially amorphous. In certain embodiments, the adhesion of the absorber layer is enhanced by the textured back contact and by the presence of the amorphous metal at the deposition surface.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: October 1, 2013
    Assignee: Miasole
    Inventors: Dallas W. Meyer, Jason Stephen Corneille, Steven Thomas Croft, Mulugeta Zerfu Wudu, William James McColl
  • Patent number: 8536054
    Abstract: Provided herein are methods of polishing and texturing surfaces thin-film photovoltaic cell substrates. The methods involve laser irradiation of a surface having a high frequency roughness in an area of 5-200 microns to form a shallow and rapidly expanding melt pool, followed by rapid cooling of the material surface. The minimization of surface tension causes the surface to re-solidify in a locally smooth surface. the high frequency roughness drops over the surface with a lower frequency bump or texture pattern remaining from the re-solidification.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: September 17, 2013
    Assignee: MIASOLE
    Inventors: Dallas W. Meyer, Jason Stephen Corneille, Steven Thomas Croft, Mulugeta Zerfu Wudu, William James McColl
  • Publication number: 20130014800
    Abstract: A photovoltaic device includes first and second photovoltaic cells, with each of the first and second photovoltaic cells having a substrate, a lower electrode disposed above the substrate along a deposition axis and that includes a conductive light transmissive layer, one or more semiconductor layers disposed above the substrate along the deposition axis, and an upper electrode disposed above the one or more semiconductor layers along the deposition axis. The semiconductor layers convert incident light into an electric current. The first and second photovoltaic cells are separated by first and second separation gaps. The first separation gap extend along the deposition axis through the lower electrode from the substrate and the second separation gap extends from a deposition surface of the light transmissive layer of the lower electrode and through a remainder of the lower electrode and the one or more semiconductor layers along the deposition axis.
    Type: Application
    Filed: July 13, 2011
    Publication date: January 17, 2013
    Applicant: ThinSilicon Corporation
    Inventors: Jason Stephens, Kunal Girotra, Guleid Hussen
  • Patent number: 8048706
    Abstract: Provided herein are improved methods of laser scribing photovoltaic structures to form monolithically integrated photovoltaic modules. The methods involve forming P1, P2 or P3 scribes by an ablative scribing mechanism having low melting, and in certain embodiments, substantially no melting. In certain embodiments, the methods involve generating an ablation shockwave at an interface of the film to be removed and the underlying layer. The film is then removed by mechanical shock. According to various embodiments, the ablation shockwave is generated by using a laser beam having a wavelength providing an optical penetration depth on the order of the film thickness and a minimum threshold intensity. In one embodiment, material including an absorber layer is scribed using an infrared laser source and a picosecond pulse width.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: November 1, 2011
    Assignee: Miasole
    Inventors: Osman Ghandour, Alex Austin, Daebong Lee, Jason Stephen Corneille, James Teixeira
  • Publication number: 20110192448
    Abstract: A solar-cell module. The solar-cell module includes a plurality of solar cells that are electrically coupled together. The solar-cell module further includes an in-laminate-diode assembly electrically coupled with the plurality of solar cells. The in-laminate-diode assembly is configured to prevent power loss. The solar-cell module also includes a protective structure at least partially encapsulating the plurality of solar cells. In addition, the solar-cell module includes a plurality of external-connection mechanisms mounted to a respective plurality of edge regions of the protective structure. An external-connection mechanism of the plurality of external-connection mechanisms is configured to enable collection of current from the plurality of solar cells and to allow interconnection with at least one other external device.
    Type: Application
    Filed: April 11, 2011
    Publication date: August 11, 2011
    Applicant: MIASOLE
    Inventors: Steven Thomas Croft, William James McColl, Shawn Everson, Jason Stephen Corneille, Kent Whitfield, Todd Krajewski, Darin Britwhistle
  • Publication number: 20110114156
    Abstract: A photovoltaic device includes: a substrate; lower and upper electrode layers disposed above the substrate; and a semiconductor layer disposed between the lower and upper electrode layers, the semiconductor layer absorbing incident light to excite electrons from the semiconductor layer, wherein the semiconductor layer includes a built-in bypass diode extending between and coupled with the lower and upper electrode layers, the bypass diode permitting electric current to flow through the bypass diode when a reverse bias is applied across the lower and upper electrode layers.
    Type: Application
    Filed: December 8, 2010
    Publication date: May 19, 2011
    Applicant: THINSILICON CORPORATION
    Inventors: Kevin Coakley, Guleid Hussen, Jason Stephens
  • Publication number: 20100313942
    Abstract: A method of manufacturing a photovoltaic module is provided. The method includes providing an electrically insulating substrate and a lower electrode, depositing a lower stack of silicon layers above the lower electrode, and depositing an upper stack of silicon layers above the lower stack. The lower and upper stacks include N-I-P junctions. The lower stack has an energy band gap of at least 1.60 eV while the upper stack has an energy band gap of at least 1.80 eV. The method also includes providing an upper electrode above the upper stack. The lower and upper stacks convert incident light into an electric potential between the upper and lower electrodes with the lower and upper stacks converting different portions of the light into the electric potential based on wavelengths of the light.
    Type: Application
    Filed: June 8, 2010
    Publication date: December 16, 2010
    Applicant: THINSILICION CORPORATION
    Inventors: Kevin Michael Coakley, Guleid Hussen, Jason Stephens, Kunal Girotra, Samuel Rosenthal
  • Publication number: 20100313952
    Abstract: A monolithically-integrated photovoltaic module is provided. The module includes an electrically insulating substrate, a lower stack of microcrystalline silicon layers above the substrate, a middle stack of amorphous silicon layers above the lower stack, an upper stack of amorphous silicon layers above the middle stack, and a light transmissive cover layer above the upper stack. An energy band gap of each of the lower, middle and upper stacks differs from one another such that a different spectrum of incident light is absorbed by each of the lower, middle and upper stacks.
    Type: Application
    Filed: June 8, 2010
    Publication date: December 16, 2010
    Applicant: THINSILICION CORPORATION
    Inventors: Kevin Michael Coakley, Guleid Hussen, Jason Stephens, Kunal Girotra, Samuel Rosenthal
  • Publication number: 20100313935
    Abstract: A monolithically-integrated photovoltaic module is provided. The module includes an insulating substrate and a lower electrode above the substrate. The method also includes a lower stack of microcrystalline silicon layers above the lower electrode, an upper stack of amorphous silicon layers above the lower stack, and an upper electrode above the upper stack. The upper and lower stacks of silicon layers have different energy band gaps. The module also includes a built-in bypass diode vertically extending in the upper and lower stacks of silicon layers from the lower electrode to the upper electrode. The built-in bypass diode includes portions of the lower and upper stacks that have a greater crystalline portion than a remainder of the lower and upper stacks.
    Type: Application
    Filed: June 8, 2010
    Publication date: December 16, 2010
    Applicant: THINSILICION CORPORATION
    Inventors: Kevin Michael Coakley, Guleid Hussen, Jason Stephens, Kunal Girotra, Samuel Rosenthal
  • Publication number: 20100258185
    Abstract: Provided herein are textured substrates for thin-film solar cells. According to various embodiments, the textured substrates are characterized by substrate patterns exhibiting low-frequency roughness or flatness and long range order. The substrates may be metallic or non-metallic substrates, and in certain embodiments are stainless steel foils. According to various embodiments, the substrates may be provided in the form of a web, ready for deposition of thin-film photovoltaic stacks. Also provided are textured back contact thin films.
    Type: Application
    Filed: June 22, 2010
    Publication date: October 14, 2010
    Applicant: MIASOLE
    Inventors: Dallas W. Meyer, Jason Stephen Corneille, Steven Thomas Croft, Mulugeta Zerfu Wudu, William James McColl
  • Publication number: 20100258982
    Abstract: Provided herein are methods of polishing and texturing surfaces thin-film photovoltaic cell substrates. The methods involve laser irradiation of a surface having a high frequency roughness in an area of 5-200 microns to form a shallow and rapidly expanding melt pool, followed by rapid cooling of the material surface. The minimization of surface tension causes the surface to re-solidify in a locally smooth surface. the high frequency roughness drops over the surface with a lower frequency bump or texture pattern remaining from the re-solidification.
    Type: Application
    Filed: June 22, 2010
    Publication date: October 14, 2010
    Applicant: MIASOLE
    Inventors: Dallas W. Meyer, Jason Stephen Corneille, Steven Thomas Croft, Mulugeta Zerfu Wudu, William James McColl
  • Publication number: 20100258542
    Abstract: Provided herein are methods of polishing, cleaning and texturing back contacts of thin-film solar cells. According to various embodiments, the methods involve irradiating sites on the back contact with laser beams to remove contaminants and/or smooth the surface of the back contact. The back contact, e.g., a molybdenum, copper, or niobium thin-film, is smoothed prior to deposition of the absorber and other thin-films of the photovoltaic stack. In certain embodiments, laser polishing of the back contact is used to enhance the diffusion barrier characteristics of the back contact layer, with all or a surface layer of the back contact becoming essentially amorphous. In certain embodiments, the adhesion of the absorber layer is enhanced by the textured back contact and by the presence of the amorphous metal at the deposition surface.
    Type: Application
    Filed: June 22, 2010
    Publication date: October 14, 2010
    Applicant: MIASOLE
    Inventors: Dallas W. Meyer, Jason Stephen Corneille, Steven Thomas Croft, Mulugeta Zerfu Wudu, William James McColl
  • Publication number: 20100255630
    Abstract: Provided herein are methods of incorporating additives into thin-film solar cell substrates and back contacts. In certain embodiments, sodium is incorporated into a substrate or a back contact of a thin-film photovoltaic stack where it can diffuse into a CIGS or other absorber layer to improve efficiency and/or growth of the layer. The methods involve laser treating the substrate or back contact in the presence of a sodium (or sodium-containing) solid or vapor to thereby incorporate sodium into the surface of the substrate or back contact. In certain embodiments, the surface is simultaneously smoothed.
    Type: Application
    Filed: June 22, 2010
    Publication date: October 7, 2010
    Applicant: MIASOLE
    Inventors: Dallas W. Meyer, Jason Stephen Corneille, Steven Thomas Croft, Mulugeta Zerfu Wudu, William James McColl
  • Publication number: 20100043863
    Abstract: An interconnect assembly. The interconnect assembly includes a trace that includes a plurality of electrically conductive portions. The plurality of electrically conductive portions is configured both to collect current from a first solar cell and to interconnect electrically to a second solar cell. In addition, the plurality of electrically conductive portions is configured such that solar-cell efficiency is substantially undiminished in an event that any one of the plurality of electrically conductive portions is conductively impaired.
    Type: Application
    Filed: September 24, 2009
    Publication date: February 25, 2010
    Applicant: MIASOLE
    Inventors: Mulugeta Zerfu Wudu, Jason Stephen Corneille, Steven Thomas Croft, Steven Douglas Flanders, William James McColl
  • Publication number: 20090027787
    Abstract: A mirror assembly for an articulated vehicle incorporates an image sensor which detects part of the trailer e.g. the end of the trailer, so that as the vehicle turns the image sensor maintains the image in its field of view and the mirror is automatically adjusted to maintain the driver's view of the part of the trailer in the mirror.
    Type: Application
    Filed: October 6, 2008
    Publication date: January 29, 2009
    Inventor: JASON STEPHEN PERKES
  • Patent number: 7213750
    Abstract: A system which facilitates the purchase of an item qualifying for pre-tax treatment utilizing at least one flexible spending account (FSA). A host computer may receive a request from a point of sale (POS) device to authorize payment for one or more items. The host computer may process the request to determine if the item qualifies for pre-tax treatment. If the item qualifies for pre-tax treatment, the host computer may transmit payment authorization to the POS device and debit at least one FSA and/or at least one non-FSA account.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: May 8, 2007
    Assignee: American Express Travel Related Services Company, Inc.
    Inventors: Brian T. Barnes, Peter B. Evans, Elliott Glazer, William Jody Gray, Jason Stephen Jagatic, Dana J. Klaboe, Lisa Frances Marchese, Leigh Reynolds Malnati, Elizabeth J. Taxin
  • Patent number: 7040772
    Abstract: A mirror assembly for an articulated vehicle (1, 2) incorporates an image sensor which detects a specific image on the trailer so that as the vehicle (1, 2) turns left the image sensor maintains the image in its field of view and the mirror is automatically adjusted to maintain the driver's view.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: May 9, 2006
    Assignee: Russell Keith Ambrose
    Inventor: Jason Stephen Perkes
  • Publication number: 20060060008
    Abstract: A test device includes a stationary web roll support assembly comprising a base and a pair of core supports spaced apart and affixed to the base with the core supports projecting upwardly from the base, the core supports structured and arranged to engage opposite ends of a core of a web roll so as to support the web roll. The test device also includes a movable weight load simulating assembly comprising a flexible belt having opposite ends, and a belt holder structured and arranged to secure the opposite ends of the belt to the belt holder with the belt forming a generally U-shaped loop about an outer surface of the web roll intermediate the opposite ends of the core. Movement of the belt holder away from the stationary web roll support assembly causes the belt to exert a load on the web roll, simulating weight load on the core and core supports.
    Type: Application
    Filed: September 23, 2004
    Publication date: March 23, 2006
    Inventors: Xiaokai Niu, David Rhodes, Jason Stephens, Yiming Wang
  • Publication number: 20060000169
    Abstract: A combination comprises a piece of treated wood that is treated with a substance corrosive to metal, a metal fastener configured to couple the piece of treated wood to a structure, and an apparatus for protecting at least a portion of the metal fastener from the treated wood. Disclosed examples of the structure to which the piece of treated wood is coupled include a building foundation and another piece of treated wood. The apparatus for protecting the metal fastener form the piece of treated wood serves as an insulator and is configured as a bushing in illustrative examples.
    Type: Application
    Filed: June 18, 2004
    Publication date: January 5, 2006
    Inventor: Jason Stephens
  • Publication number: 20040165292
    Abstract: A mirror assembly for an articulated vehicle (1, 2) incorporates an image sensor which detects a specific image on the trailer so that as the vehicle (1, 2) turns left the image sensor maintains the image in its field of view and the mirror is automatically adjusted to maintain the driver's view.
    Type: Application
    Filed: December 15, 2003
    Publication date: August 26, 2004
    Inventor: Jason Stephen Perkes