Patents by Inventor Jason Tian

Jason Tian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8034725
    Abstract: This invention provides a high throughput PECVD process for depositing TEOS films in a multi-station sequential deposition chamber. The methods significantly reduce the number of particles in the TEOS films, thereby eliminating or minimizing small bin defects. The methods of the invention involve dedicating a first station for temperature soak while flowing purge gas. Stopping the flow of reactant gas and flowing the purge gas for station 1 eliminates TEOS condensation on a cold wafer surface and significantly reduces the number of defects in the film, particularly for short temperature soaks.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: October 11, 2011
    Assignee: Novellus Systems, Inc.
    Inventors: Jon Henri, Xingyuan Tang, Jason Tian, Kevin Gerber, Arul N. Dhas
  • Patent number: 7704894
    Abstract: This invention provides a high throughput PECVD process for depositing TEOS films in a multi-station sequential deposition chamber. The methods significantly reduce the number of particles in the TEOS films, thereby eliminating or minimizing small bin defects. The methods of the invention involve dedicating a first station for temperature soak while flowing purge gas. Stopping the flow of reactant gas and flowing the purge gas for station 1 eliminates TEOS condensation on a cold wafer surface and significantly reduces the number of defects in the film, particularly for short temperature soaks.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: April 27, 2010
    Assignee: Novellus Systems, Inc.
    Inventors: Jon Henri, Xingyuan Tang, Jason Tian, Kevin Gerber, Arul N. Dhas
  • Patent number: 7052988
    Abstract: A nitrogen-free anti-reflective layer for use in semiconductor photolithography is fabricated in a chemical vapor deposition process, optionally plasma-enhanced, using a gaseous mixture of carbon, silicon, and oxygen sources. By varying the process parameters, acceptable values of the refractive index n and extinction coefficient k can be obtained. The nitrogen-free anti-reflective layer produced by this technique eliminates the mushrooming and footing problems found with conventional anti-reflective layers.
    Type: Grant
    Filed: February 5, 2004
    Date of Patent: May 30, 2006
    Assignee: Novellus Systems, Inc.
    Inventors: Bart van Schravendijk, Ming Li, Jason Tian, Tom Mountsier, M. Ziaul Karim
  • Patent number: 6844612
    Abstract: A fluorine-doped silica glass (FSG) dielectric layer includes a number of sublayers. Each sublayer is doped with fluorine in such a way that the doping concentration of fluorine in the sublayer decreases as one moves from an interior region of the sublayer towards one or both of the interfaces between the sublayer and adjacent sublayers. This structure reduces the generation of HF when the layer is exposed to moisture and thereby improves the stability and adhesion properties of the layer. The principles of this invention can also be applied to dielectric layers doped with such other dopants as boron, phosphorus or carbon.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: January 18, 2005
    Assignee: Novellus Systems, Inc.
    Inventors: Jason Tian, Wenxian Zhu, M. Ziaul Karim, Cong Do
  • Patent number: 6720251
    Abstract: A nitrogen-free anti-reflective layer for use in semiconductor photolithography is fabricated in a chemical vapor deposition process, optionally plasma-enhanced, using a gaseous mixture of carbon, silicon, and oxygen sources. By varying the process parameters, acceptable values of the refractive index n and extinction coefficient k can be obtained. The nitrogen-free anti-reflective layer produced by this technique eliminates the mushrooming and footing problems found with conventional anti-reflective layers.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: April 13, 2004
    Assignee: Novellus Systems, Inc.
    Inventors: Bart van Schravendijk, Ming Li, Jason Tian, Tom Mountsier, M. Zlaul Karim
  • Patent number: 6524956
    Abstract: A chemical vapor deposition process for depositing tungsten films having small grain size is provided. The process involves depositing a nucleation layer having very small nuclei that are closely spaced so that there are few vacancies on the surface. Such a nucleation layer results in a film with small grains after the subsequent deposition of bulk layers. The temperature of the substrate can be increased during deposition of the nucleation layer and then lowered for deposition of the bulk layer to produce a small grain tungsten film. Additionally, the thickness of the nucleation layer can be controlled, and the deposition chamber pressure and silage flow rates can also be controlled to achieve the desired nucleation layer before deposition of the bulk layers.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: February 25, 2003
    Assignee: Novelius Systems, Inc.
    Inventors: Jason Tian, Jon Henri