Patents by Inventor Jason W. Klaus

Jason W. Klaus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11887891
    Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.
    Type: Grant
    Filed: January 17, 2023
    Date of Patent: January 30, 2024
    Assignee: Intel Corporation
    Inventors: Mark T. Bohr, Tahir Ghani, Nadia M. Rahhal-Orabi, Subhash M. Joshi, Joseph M. Steigerwald, Jason W. Klaus, Jack Hwang, Ryan Mackiewicz
  • Publication number: 20240030067
    Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.
    Type: Application
    Filed: September 29, 2023
    Publication date: January 25, 2024
    Inventors: Mark T. BOHR, Tahir GHANI, Nadia M. RAHHAL-ORABI, Subhash M. JOSHI, Joseph M. STEIGERWALD, Jason W. KLAUS, Jack HWANG, Ryan MACKIEWICZ
  • Publication number: 20230154793
    Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.
    Type: Application
    Filed: January 17, 2023
    Publication date: May 18, 2023
    Inventors: Mark T. BOHR, Tahir GHANI, Nadia M. RAHHAL-ORABI, Subhash M. JOSHI, Joseph M. STEIGERWALD, Jason W. KLAUS, Jack HWANG, Ryan MACKIEWICZ
  • Patent number: 11652045
    Abstract: An example via contact patterning method includes providing a pattern of alternating trench contacts and gates over a support structure. For each pair of adjacent trench contacts and gates, a trench contact is electrically insulated from an adjacent gate by a dielectric material and/or multiple layers of different dielectric materials, and the gates are recessed with respect to the trench contacts. The method further includes wrapping a protective layer of one or more dielectric materials, and a sacrificial helmet material on top of the trench contacts to protect them during the via contact patterning and etch processes for forming via contacts over one or more gates. Such a method may advantageously allow increasing the edge placement error margin for forming via contacts of metallization stacks.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: May 16, 2023
    Assignee: Intel Corporation
    Inventors: Mohit K. Haran, Daniel James Bahr, Deepak S. Rao, Marvin Young Paik, Seungdo An, Debashish Basu, Kilhyun Bang, Jason W. Klaus, Reken Patel, Charles Henry Wallace, James Jeong, Ruth Amy Brain
  • Patent number: 11600524
    Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: March 7, 2023
    Assignee: Intel Corporation
    Inventors: Mark T. Bohr, Tahir Ghani, Nadia M. Rahhal-Orabi, Subhash M. Joshi, Joseph M. Steigerwald, Jason W. Klaus, Jack Hwang, Ryan Mackiewicz
  • Publication number: 20220051975
    Abstract: An example via contact patterning method includes providing a pattern of alternating trench contacts and gates over a support structure. For each pair of adjacent trench contacts and gates, a trench contact is electrically insulated from an adjacent gate by a dielectric material and/or multiple layers of different dielectric materials, and the gates are recessed with respect to the trench contacts. The method further includes wrapping a protective layer of one or more dielectric materials, and a sacrificial helmet material on top of the trench contacts to protect them during the via contact patterning and etch processes for forming via contacts over one or more gates. Such a method may advantageously allow increasing the edge placement error margin for forming via contacts of metallization stacks.
    Type: Application
    Filed: October 27, 2021
    Publication date: February 17, 2022
    Applicant: Intel Corporation
    Inventors: Mohit K. Haran, Daniel James Bahr, Deepak S. Rao, Marvin Young Paik, Seungdo An, Debashish Basu, Kilhyun Bang, Jason W. Klaus, Reken Patel, Charles Henry Wallace, James Jeong, Ruth Amy Brain
  • Patent number: 11211324
    Abstract: An example via contact patterning method includes providing a pattern of alternating trench contacts and gates over a support structure. For each pair of adjacent trench contacts and gates, a trench contact is electrically insulated from an adjacent gate by a dielectric material and/or multiple layers of different dielectric materials, and the gates are recessed with respect to the trench contacts. The method further includes wrapping a protective layer of one or more dielectric materials, and a sacrificial helmet material on top of the trench contacts to protect them during the via contact patterning and etch processes for forming via contacts over one or more gates. Such a method may advantageously allow increasing the edge placement error margin for forming via contacts of metallization stacks.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: December 28, 2021
    Assignee: Intel Corporation
    Inventors: Mohit K. Haran, Daniel James Bahr, Deepak S. Rao, Marvin Young Paik, Seungdo An, Debashish Basu, Kilhyun Bang, Jason W. Klaus, Reken Patel, Charles Henry Wallace, James Jeong, Ruth Amy Brain
  • Publication number: 20210134673
    Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.
    Type: Application
    Filed: January 12, 2021
    Publication date: May 6, 2021
    Inventors: Mark T. BOHR, Tahir GHANI, Nadia M. RAHHAL-ORABI, Subhash M. JOSHI, Joseph M. STEIGERWALD, Jason W. KLAUS, Jack HWANG, Ryan MACKIEWICZ
  • Publication number: 20210082805
    Abstract: An example via contact patterning method includes providing a pattern of alternating trench contacts and gates over a support structure. For each pair of adjacent trench contacts and gates, a trench contact is electrically insulated from an adjacent gate by a dielectric material and/or multiple layers of different dielectric materials, and the gates are recessed with respect to the trench contacts. The method further includes wrapping a protective layer of one or more dielectric materials, and a sacrificial helmet material on top of the trench contacts to protect them during the via contact patterning and etch processes for forming via contacts over one or more gates. Such a method may advantageously allow increasing the edge placement error margin for forming via contacts of metallization stacks.
    Type: Application
    Filed: September 18, 2019
    Publication date: March 18, 2021
    Applicant: Intel Corporation
    Inventors: Mohit K. Haran, Daniel James Bahr, Deepak S. Rao, Marvin Young Paik, Seungdo An, Debashish Basu, Kilhyun Bang, Jason W. Klaus, Reken Patel, Charles Henry Wallace, James Jeong, Ruth Amy Brain
  • Patent number: 10930557
    Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: February 23, 2021
    Assignee: Intel Corporation
    Inventors: Mark T. Bohr, Tahir Ghani, Nadia M. Rahhal-Orabi, Subhash M. Joshi, Joseph M. Steigerwald, Jason W. Klaus, Jack Hwang, Ryan Mackiewicz
  • Publication number: 20200251387
    Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.
    Type: Application
    Filed: March 16, 2020
    Publication date: August 6, 2020
    Inventors: Mark T. BOHR, Tahir GHANI, Nadia M. RAHHAL-ORABI, Subhash M. JOSHI, Joseph M. STEIGERWALD, Jason W. KLAUS, Jack HWANG, Ryan MACKIEWICZ
  • Patent number: 10629483
    Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: April 21, 2020
    Assignee: Intel Corporation
    Inventors: Mark T. Bohr, Tahir Ghani, Nadia M. Rahhal-Orabi, Subhash M. Joshi, Joseph M. Steigerwald, Jason W. Klaus, Jack Hwang, Ryan Mackiewicz
  • Publication number: 20190051558
    Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.
    Type: Application
    Filed: October 16, 2018
    Publication date: February 14, 2019
    Inventors: Mark T. Bohr, Tahir Ghani, Nadia M. Rahhal-Orabi, Subhash M. Joshi, Joseph M. Steigerwald, Jason W. Klaus, Jack Hwang, Ryan Mackiewicz
  • Patent number: 10141226
    Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: November 27, 2018
    Assignee: Intel Corporation
    Inventors: Mark T. Bohr, Tahir Ghani, Nadia M. Rahhal-Orabi, Subhash M. Joshi, Joseph M. Steigerwald, Jason W. Klaus, Jack Hwang, Ryan Mackiewicz
  • Publication number: 20180096891
    Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.
    Type: Application
    Filed: November 30, 2017
    Publication date: April 5, 2018
    Applicant: INTEL CORPORATION
    Inventors: Mark T. Bohr, Tahir Ghani, Nadia M. Rahhal-Orabi, Subhash M. Joshi, Joseph M. Steigerwald, Jason W. Klaus, Jack Hwang, Ryan Mackiewicz
  • Patent number: 9892967
    Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: February 13, 2018
    Assignee: INTEL CORPORATION
    Inventors: Mark T. Bohr, Tahir Ghani, Nadia M. Rahhal-Orabi, Subhash M. Joshi, Joseph M. Steigerwald, Jason W. Klaus, Jack Hwang, Ryan Mackiewicz
  • Publication number: 20170040218
    Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.
    Type: Application
    Filed: October 20, 2016
    Publication date: February 9, 2017
    Inventors: Mark T. Bohr, Tahir Ghani, Nadia M. Rahhal-Orabi, Subhash M. Joshi, Joseph M. Steigerwald, Jason W. Klaus, Jack Hwang, Ryan Mackiewicz
  • Patent number: 9508821
    Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: November 29, 2016
    Inventors: Mark T. Bohr, Tahir Ghani, Nadia M. Rahhal-Orabi, Subhash M. Joshi, Joseph M. Steigerwald, Jason W. Klaus, Jack Hwang, Ryan Mackiewicz
  • Patent number: 9466565
    Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: October 11, 2016
    Assignee: Intel Corporation
    Inventors: Mark T Bohr, Tahir Ghani, Nadia M. Rahhai-Orabi, Subhash M. Joshi, Joseph M. Steigerwald, Jason W. Klaus, Jack Hwang, Ryan Mackiewicz
  • Publication number: 20160155815
    Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.
    Type: Application
    Filed: December 23, 2015
    Publication date: June 2, 2016
    Inventors: Mark T. BOHR, Tahir GHANI, Nadia M. RAHHAL-ORABI, Subhash M. JOSHI, Joseph M. STEIGERWALD, Jason W. KLAUS, Jack HWANG, Ryan MACKIEWICZ