Patents by Inventor Jay D. Pinson

Jay D. Pinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160268103
    Abstract: A plasma source is provided including a core element extending from a first end to a second end along a first axis. The plasma source further includes one or more coils disposed around respective one or more first portions of the core element. The plasma source further includes a plasma block having one or more interior walls at least partially enclosing an annular plasma-generating volume that is disposed around a second portion of the core element. The annular plasma-generating volume includes a first region that is symmetrical about a plurality of perpendicular axes that are perpendicular to a first point positioned on the first axis, the first region having a width in a direction parallel to the first axis and a depth in a direction perpendicular from the first axis. The first region has a width that is at least three times greater than the depth of the first region.
    Type: Application
    Filed: March 14, 2016
    Publication date: September 15, 2016
    Inventors: Abdul Aziz KHAJA, Mohamad A. AYOUB, Ramesh BOKKA, Jay D. PINSON, II, Juan Carlos ROCHA-ALVAREZ
  • Patent number: 9305749
    Abstract: A plasma source includes a plasma vessel that includes a dielectric material that encloses a cavity of a toroidal shape. The toroidal shape defines a toroidal axis therethrough. The vessel forms input and output connections, each of the input and output connections being in fluid communication with the cavity. One or more metal plates are disposed adjacent to the plasma vessel for cooling the plasma vessel. A magnetic core is disposed along the toroidal axis such that respective first and second ends of the magnetic core extend beyond axially opposed sides of the plasma vessel. First and second induction coils are wound about the respective first and second ends of the magnetic core. A plasma is generated in the cavity when an input gas is supplied through the input connection and an oscillating electrical current is supplied to the first and second induction coils.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: April 5, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Zheng John Ye, Jay D. Pinson, II, Hiroji Hanawa, Juan Carlos Rocha-Alvarez
  • Publication number: 20160086772
    Abstract: A remote plasma source is disclosed that includes a core element and a first plasma block including one or more surfaces at least partially enclosing an annular-shaped plasma generating region that is disposed around a first portion of the core element. The remote plasma source further comprises one or more coils disposed around respective second portions of the core element. The remote plasma source further includes an RF power source configured to drive a RF power signal onto the one or more coils that is based on a determined impedance of the plasma generating region. Energy from the RF power signal is coupled with the plasma generating region via the one or more coils and the core element.
    Type: Application
    Filed: September 23, 2015
    Publication date: March 24, 2016
    Inventors: Abdul Aziz KHAJA, Mohamad A. AYOUB, Ramesh BOKKA, Jay D. PINSON, II, Juan Carlos ROCHA-ALVAREZ
  • Patent number: 9285168
    Abstract: A substrate processing system that has a plurality of deposition chambers, and one or more robotic arms for moving a substrate between one or more of a deposition chamber, load lock holding area, and a curing and treatment module. The substrate curing and treatment module is attached to the load-lock substrate holding area, and may include: The curing chamber for curing a dielectric layer in an atmosphere comprising ozone, and a treatment chamber for treating the cured dielectric layer in an atmosphere comprising water vapor. The chambers may be vertically aligned, have one or more access doors, and may include a heating system to adjust the curing and/or heating chambers between two or more temperatures respectively.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: March 15, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Dmitry Lubomirsky, Jay D. Pinson, II, Kirby H. Floyd, Adib Khan, Shankar Venkataraman
  • Publication number: 20160049323
    Abstract: Embodiments of the present disclosure provide an electrostatic chuck for maintaining a flatness of a substrate being processed in a plasma reactor at high temperatures. In one embodiment, the electrostatic chuck comprises a chuck body coupled to a support stem, the chuck body having a substrate supporting surface, and the chuck body has a volume resistivity value of about 1×107 ohm-cm to about 1×1015 ohm-cm in a temperature of about 250° C. to about 700° C., and an electrode embedded in the body, the electrode is coupled to a power supply. In one example, the chuck body is composed of an aluminum nitride material which has been observed to be able to optimize chucking performance around 600° C. or above during a deposition or etch process, or any other process that employ both high operating temperature and substrate clamping features.
    Type: Application
    Filed: August 12, 2015
    Publication date: February 18, 2016
    Inventors: Zheng John YE, Jay D. PINSON, II, Hiroji HANAWA, Jianhua ZHOU, Xing LIN, Ren-Guan DUAN, Kwangduk Douglas LEE, Bok Hoen KIM, Swayambhu P. BEHERA, Sungwon HA, Ganesh BALASUBRAMANIAN, Juan Carlos ROCHA- ALVAREZ, Prashant Kumar KULSHRESHTHA, Jason K. FOSTER, Mukund SRINIVASAN, Uwe P. HALLER, Hari K. PONNEKANTI
  • Publication number: 20160020071
    Abstract: Embodiments of the present disclosure generally relate to methods for conditioning an interior wall surface of a remote plasma generator. In one embodiment, a method for processing a substrate is provided. The method includes exposing an interior wall surface of a remote plasma source to a conditioning gas that is in excited state to passivate the interior wall surface of the remote plasma source, wherein the remote plasma source is coupled through a conduit to a processing chamber in which a substrate is disposed, and the conditioning gas comprises an oxygen-containing gas, a nitrogen-containing gas, or a combination thereof. The method has been observed to be able to improve dissociation/recombination rate and plasma coupling efficiency in the processing chamber, and therefore provides repeatable and stable plasma source performance from wafer to wafer.
    Type: Application
    Filed: April 23, 2015
    Publication date: January 21, 2016
    Inventors: Abdul Aziz KHAJA, Mohamad AYOUB, Jay D. PINSON, II, Juan Carlos ROCHA-ALVAREZ
  • Publication number: 20150329970
    Abstract: Embodiments of the present disclosure generally relate to a batch processing chamber that is adapted to simultaneously cure multiple substrates at one time. The batch processing chamber includes multiple processing sub-regions that are each independently temperature controlled. The batch processing chamber may include a first and a second sub-processing region that are each serviced by a substrate transport device external to the batch processing chamber. In addition, a slotted cover mounted on the loading opening of the batch curing chamber reduces the effect of ambient air entering the chamber during loading and unloading.
    Type: Application
    Filed: December 19, 2014
    Publication date: November 19, 2015
    Inventors: Adib KHAN, Shankar VENKATARAMAN, Jay D. PINSON, II, Jang-Gyoo YANG, Nitin Krishnarao INGLE, Qiwei LIANG
  • Publication number: 20150228456
    Abstract: A plasma source includes a plasma vessel that includes a dielectric material that encloses a cavity of a toroidal shape. The toroidal shape defines a toroidal axis therethrough. The vessel forms input and output connections, each of the input and output connections being in fluid communication with the cavity. One or more metal plates are disposed adjacent to the plasma vessel for cooling the plasma vessel. A magnetic core is disposed along the toroidal axis such that respective first and second ends of the magnetic core extend beyond axially opposed sides of the plasma vessel. First and second induction coils are wound about the respective first and second ends of the magnetic core. A plasma is generated in the cavity when an input gas is supplied through the input connection and an oscillating electrical current is supplied to the first and second induction coils.
    Type: Application
    Filed: January 20, 2015
    Publication date: August 13, 2015
    Applicant: Applied Materials, Inc.
    Inventors: ZHENG JOHN YE, Jay D. Pinson, II, Hiroji Hanawa, Juan Carlos Rocha-Alvarez
  • Publication number: 20150136325
    Abstract: A system for modifying the uniformity pattern of a thin film deposited in a plasma processing chamber includes a single radio-frequency (RF) power source that is coupled to multiple points on the discharge electrode of the plasma processing chamber. Positioning of the multiple coupling points, a power distribution between the multiple coupling points, or a combination of both are selected to at least partially compensate for a consistent non-uniformity pattern of thin films produced by the chamber. The power distribution between the multiple coupling points may be produced by an appropriate RF phase difference between the RF power applied at each of the multiple coupling points.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 21, 2015
    Inventors: Zheng John YE, Ganesh BALASUBRAMANIAN, Thuy BRICHER, Jay D. PINSON, II, Hiroji HANAWA, Juan Carlos ROCHA-ALVAREZ, Kwangduk Douglas LEE, Martin Jay SEAMONS, Bok Hoen KIM, Sungwon HA
  • Patent number: 8550031
    Abstract: Embodiments of the invention generally include a robot assembly comprising a robot operable to position a substrate at one or more points within a plane, and a motion assembly having a motor operable to position the robot in a direction generally parallel to a first direction. The motion assembly comprises a robot support interface having the robot coupled thereto, and one or more walls that form an interior region in which the motor is enclosed. The walls define an elongated opening through which the robot support interface travels, and the motor is operable to move the robot support interface laterally in the elongated opening. The motion assembly further comprises one or more fan assemblies that are in fluid communication with the interior region. The fan assemblies are operable to create a subatmospheric pressure in the interior region thereby causing gas to flow through the elongated opening into the interior region.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: October 8, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Patent number: 8524004
    Abstract: A substrate processing chamber for processing a plurality of wafers in batch mode. In one embodiment the chamber includes a vertically aligned housing having first and second processing areas separated by an internal divider, the first processing area positioned directly over the second processing area; a multi-zone heater operatively coupled to the housing to heat the first and second processing areas independent of each other; a wafer transport adapted to hold a plurality of wafers within the processing chamber and move vertically between the first and second processing areas; a gas distribution system adapted to introduce ozone into the second area and steam into the first processing area; and a gas exhaust system configured to exhaust gases introduced into the first and second processing areas.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: September 3, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Dmitry Lubomirsky, Jay D. Pinson, II, Kirby H. Floyd, Adib Khan, Shankar Venkataraman
  • Publication number: 20120320361
    Abstract: Embodiments of the invention generally include a robot assembly comprising a robot operable to position a substrate at one or more points within a plane, and a motion assembly having a motor operable to position the robot in a direction generally parallel to a first direction. The motion assembly comprises a robot support interface having the robot coupled thereto, and one or more walls that form an interior region in which the motor is enclosed. The walls define an elongated opening through which the robot support interface travels, and the motor is operable to move the robot support interface laterally in the elongated opening. The motion assembly further comprises one or more fan assemblies that are in fluid communication with the interior region. The fan assemblies are operable to create a subatmospheric pressure in the interior region thereby causing gas to flow through the elongated opening into the interior region.
    Type: Application
    Filed: June 15, 2012
    Publication date: December 20, 2012
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchem, Brian Lue
  • Publication number: 20120180983
    Abstract: The present invention generally provides a cluster tool for processing a substrate. In one embodiment, the cluster tool comprises at least one processing rack, which comprises a first plurality of substrate processing chambers that are positioned adjacent to each other and aligned in a first direction, a second plurality of substrate processing chambers that are positioned adjacent to each other and adjacent to at least one of the first plurality of substrate processing chambers, the second plurality of substrate processing chambers being positioned in a second direction relative to the first direction, a first shuttle robot movable in the first direction for moving substrates between each of the first plurality of substrate processing chambers, and a second shuttle robot movable in the second direction for moving substrates between each of the second plurality of substrate processing chambers.
    Type: Application
    Filed: March 2, 2012
    Publication date: July 19, 2012
    Inventors: TETSUYA ISHIKAWA, RICK J. ROBERTS, HELEN R. ARMER, LEON VOLFOVSKI, JAY D. PINSON, MICHAEL RICE, DAVID H. QUACH, MOHSEN S. SALEK, ROBERT LOWRANCE, JOHN A. BACKER, WILLIAM TYLER WEAVER, CHARLES CARLSON, CHONGYANG WANG, JEFFREY HUDGENS, HARALD HERCHEN, BRIAN LUE
  • Patent number: 8215262
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment, a cluster tool for processing a substrate includes a first processing rack, a first robot assembly and a second robot assembly operable to transfer substrates to substrate processing chambers in the first processing rack, and a horizontal motion assembly. The horizontal motion assembly includes one or more walls that form an interior region in which a motor is enclosed. The one or more walls defining an elongated opening through which a robot support interface travels, the robot support interface supporting a robot of the horizontal motion assembly.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: July 10, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lu
  • Publication number: 20120145079
    Abstract: A substrate processing chamber for processing a plurality of wafers in batch mode. In one embodiment the chamber includes a vertically aligned housing having first and second processing areas separated by an internal divider, the first processing area positioned directly over the second processing area; a multi-zone heater operatively coupled to the housing to heat the first and second processing areas independent of each other; a wafer transport adapted to hold a plurality of wafers within the processing chamber and move vertically between the first and second processing areas; a gas distribution system adapted to introduce ozone into the second area and steam into the first processing area; and a gas exhaust system configured to exhaust gases introduced into the first and second processing areas.
    Type: Application
    Filed: June 15, 2011
    Publication date: June 14, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Dmitry Lubomirsky, Jay D. Pinson, II, Kirby H. Floyd, Adib Khan, Shankar Venkataraman
  • Patent number: 8181596
    Abstract: An apparatus for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, a smaller system footprint, and a more repeatable wafer history. Embodiments provide for a cluster tool comprising first and second processing racks, each having two or more vertically stacked substrate processing chambers, a first robot assembly able to access the first processing rack from a first side, a second robot assembly able to access the first processing rack from a second side and the second processing rack from a first side, a third robot assembly able to access the second processing rack from a second side, and a fourth robot assembly able to access the first and second processing racks and to load substrates in a cassette.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: May 22, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lu
  • Publication number: 20120079982
    Abstract: A substrate processing system that has a plurality of deposition chambers, and one or more robotic arms for moving a substrate between one or more of a deposition chamber, load lock holding area, and a curing and treatment module. The substrate curing and treatment module is attached to the load-lock substrate holding area, and may include: The curing chamber for curing a dielectric layer in an atmosphere comprising ozone, and a treatment chamber for treating the cured dielectric layer in an atmosphere comprising water vapor. The chambers may be vertically aligned, have one or more access doors, and may include a heating system to adjust the curing and/or heating chambers between two or more temperatures respectively.
    Type: Application
    Filed: September 28, 2011
    Publication date: April 5, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Dmitry Lubomirsky, Jay D. Pinson, II, Kirby H. Floyd, Adib Khan, Shankar Venkataraman
  • Patent number: 8146530
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. Embodiments also provide for a method and apparatus that are used to improve the coater chamber, the developer chamber, the post exposure bake chamber, the chill chamber, and the bake chamber process results. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: April 3, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lu
  • Publication number: 20120055916
    Abstract: A rapid temperature change (RTC) system includes a bake plate assembly including a heat spreader; a heater substrate coupled to the heat spreader; and a heater layer coupled to the heater substrate. The RTC system also includes a passive chill structure positioned adjacent the bake plate assembly. The passive chill structure is moveable to make physical contact with the heater layer. The passive chill structure includes a chill plate and a thermal pad coupled to the chill plate. The RTC system further includes an active chill structure positioned adjacent the passive chill structure. The passive chill structure is moveable to make physical contact with the active chill structure.
    Type: Application
    Filed: February 28, 2011
    Publication date: March 8, 2012
    Applicant: Sokudo Co., Ltd.
    Inventors: Leon Volfovski, Harald Herchen, Jay D. Pinson
  • Patent number: 7925377
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment of the cluster tool, grouping substrates together, and transferring and processing the substrates in groups of two or more, improves system throughput, and reduces the number of moves a robot has to make to transfer a batch of substrates between the processing chambers, thus reducing wear on the robot and increasing system reliability. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: April 12, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue, John A. Backer