Patents by Inventor Jay D. Pinson

Jay D. Pinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7819079
    Abstract: The present invention generally provides an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that is easily configurable, has an increased system throughput, increased system reliability, improved device yield performance, a more repeatable wafer processing history (or wafer history), and a reduced footprint. In one embodiment, the cluster tool is adapted to perform a track lithography process in which a substrate is coated with a photosensitive material, is then transferred to a stepper/scanner, which exposes the photosensitive material to some form of radiation to form a pattern in the photosensitive material, and then certain portions of the photosensitive material are removed in a developing process completed in the cluster tool.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: October 26, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Eric A. Englhardt, Michael R. Rice, Jeffrey C. Hudgens, Steve Hongkham, Jay D. Pinson, Mohsen Salek, Charles Carlson, William T Weaver, Helen R. Armer
  • Patent number: 7743728
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool). In one embodiment, the cluster tool is adapted to perform a track lithography process in which a photosensitive material is applied to a substrate, patterned in a stepper/scanner, and then removed in a developing process completed in the cluster tool. In one embodiment of the cluster tool, substrates are grouped together in groups of two or more for transfer or processing to improve system throughput, reduce the number of moves a robot has to make to transfer a batch of substrates between the processing chambers, and thus increase system reliability. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: June 29, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Patent number: 7694647
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. Embodiments also provide for a method and apparatus that are used to improve the coater chamber, the developer chamber, the post exposure bake chamber, the chill chamber, and the bake chamber process results. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: April 13, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Publication number: 20090064928
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment, the cluster tool is adapted to perform a track lithography process in which a substrate is coated with a photosensitive material, is then transferred to a stepper/scanner, which exposes the photosensitive material to some form of radiation to form a pattern in the photosensitive material, which is then removed in a developing process completed in the cluster tool.
    Type: Application
    Filed: October 20, 2008
    Publication date: March 12, 2009
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Publication number: 20090067956
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment, the cluster tool is adapted to perform a track lithography process in which a substrate is coated with a photosensitive material, is then transferred to a stepper/scanner, which exposes the photosensitive material to some form of radiation to form a pattern in the photosensitive material, which is then removed in a developing process completed in the cluster tool.
    Type: Application
    Filed: October 20, 2008
    Publication date: March 12, 2009
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Publication number: 20090064929
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that has an increased system throughput, increased system reliability, substrates processed in the cluster tool have a more repeatable wafer history, and also the cluster tool has a smaller system footprint. In one embodiment, the cluster tool is adapted to perform a track lithography process in which a substrate is coated with a photosensitive material, is then transferred to a stepper/scanner, which exposes the photosensitive material to some form of radiation to form a pattern in the photosensitive material, which is then removed in a developing process completed in the cluster tool.
    Type: Application
    Filed: October 20, 2008
    Publication date: March 12, 2009
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lu
  • Publication number: 20080223293
    Abstract: A cluster tool for processing a substrate includes a cassette and a processing module including a first process chamber that is configured to perform a chill process on a substrate, a second processing chamber that is configured to perform a bake process on the substrate, and an input chamber. The first processing chamber, the second processing chamber, and the input chamber are substantially adjacent to each other. The processing modules also includes a robot that is configured to receive the substrate in the input chamber and transfer and position the substrate in the first processing chamber and second processing chamber. The robot includes a robot blade, an actuator, and a heat exchanging device. The heat exchanging device includes a chilled transfer assembly. The cluster tool also includes a 6-axis articulated robot configured to transfer the substrate between the cassette and the input chamber.
    Type: Application
    Filed: February 19, 2008
    Publication date: September 18, 2008
    Applicant: Sokudo Co,. Ltd.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Patent number: 7415981
    Abstract: A filter pad, particularly for a protective hood or smoke mask, has a flow distributor and an adjacent underlying filter layer. The flow distributor, which is impermeable or substantially impermeable to gas, diverts gas flow and directs flow in the underlying filter layer thus increasing or maximizing resident time for filtering in the filter layer. The filter pad may include one or more flow distributors and one or more filter layers. The filter pad may be incorporated into a protective hood that is provided for the protection of individuals in the event of fire or other disaster. The hood includes a transparent, low flammability cover having an opening therein with the filter pad exposed through the opening, the hood being disposed over and completely around the head of a wearer with a bottom thereof extending to a neck of the wearer.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: August 26, 2008
    Assignee: Lifeline Tech, Inc.
    Inventors: Jay D. Pinson, Michael B. Jennings, Raymond Brindos
  • Publication number: 20080199282
    Abstract: Embodiments generally provide an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool). In one embodiment, the cluster tool is adapted to perform a track lithography process in which a photosensitive material is applied to a substrate, patterned in a stepper/scanner, and then removed in a developing process completed in the cluster tool. In one embodiment of the cluster tool, substrates are grouped together in groups of two or more for transfer or processing to improve system throughput, reduce the number of moves a robot has to make to transfer a batch of substrates between the processing chambers, and thus increase system reliability. Embodiments also provide for a method and apparatus that are used to increase the reliability of the substrate transfer process to reduce system down time.
    Type: Application
    Filed: April 21, 2008
    Publication date: August 21, 2008
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Publication number: 20080099181
    Abstract: A method of performing a temperature set point change for a bake plate of a track lithography tool includes positioning a cooling surface of an actively chilled transfer shuttle adjacent a process surface of the bake plate. The actively chilled transfer shuttle includes the cooling surface and a transfer surface opposing the cooling surface. The method also includes monitoring a temperature of the bake plate, initiating a flow of a cooling fluid through one or more orifices provided on the cooling surface of the actively chilled transfer shuttle, and determining that the temperature of the bake plate has decreased by a predetermined temperature. The method further includes terminating the flow of the cooling fluid and moving the actively chilled transfer shuttle to a robot transfer position.
    Type: Application
    Filed: March 26, 2007
    Publication date: May 1, 2008
    Applicant: SOKUDO CO., LTD.
    Inventors: Natarajan Ramanan, Jay D. Pinson, Anzhong Chang
  • Patent number: 7357842
    Abstract: A cluster tool for processing a substrate includes a cassette and a processing module including a first processing chamber that is configured to perform a chill process on a substrate, a second processing chamber that is configured to perform a bake process on the substrate, and an input chamber. The first processing chamber, the second processing chamber, and the input chamber are substantially adjacent to each other. The processing module also includes a robot that is configured to receive the substrate in the input chamber and transfer and position the substrate in the first processing chamber and second processing chamber. The robot includes a robot blade, an actuator, and a heat exchanging device. The heat exchanging device includes a chilled transfer arm assembly. The cluster tool also includes a 6-axis articulated robot configured to transfer the substrate between the cassette and the input chamber.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: April 15, 2008
    Assignee: Sokudo Co., Ltd.
    Inventors: Tetsuya Ishikawa, Rick J. Roberts, Helen R. Armer, Leon Volfovski, Jay D. Pinson, Michael Rice, David H. Quach, Mohsen S. Salek, Robert Lowrance, John A. Backer, William Tyler Weaver, Charles Carlson, Chongyang Wang, Jeffrey Hudgens, Harald Herchen, Brian Lue
  • Publication number: 20070144439
    Abstract: The present invention generally provides an apparatus and method for processing substrates using a multi-chamber processing system (e.g., a cluster tool) that is easily configurable, has an increased system throughput, increased system reliability, improved device yield performance, a more repeatable wafer processing history (or wafer history), and a reduced footprint. In one embodiment, the cluster tool is adapted to perform a track lithography process in which a substrate is coated with a photosensitive material, is then transferred to a stepper/scanner, which exposes the photosensitive material to some form of radiation to form a pattern in the photosensitive material, and then certain portions of the photosensitive material are removed in a developing process completed in the cluster tool.
    Type: Application
    Filed: September 8, 2006
    Publication date: June 28, 2007
    Inventors: Eric A. Englhardt, Michael R. Rice, Jeffrey C. Hudgens, Steve Hongkham, Jay D. Pinson, Mohsen Salek, Charles Carlson, William T. Weaver, Helen R. Armer
  • Patent number: 6887124
    Abstract: The substrate processing system has a factory interface module, a chemical mechanical polisher, a cleaner, a particle monitor and a substrate transfer system disposed as an integrated system. The factory interface module may includes a chamber a storage station located in a chamber of the module to hold a plurality of substrates in a substantially horizontal position. The storage station may hold pad break-in wafers for pad preconditioning and/or monitor wafers for defects monitoring. The particle monitor may have a port coupled to the factory interface module.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: May 3, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Jay D. Pinson, II, Arulkumar Shanmugasundram
  • Patent number: 6545420
    Abstract: A domed plasma reactor chamber uses an antenna driven by RF energy (LF, MF, or VHF) which is inductively coupled inside the reactor dome. The antenna generates a high density, low energy plasma inside the chamber for etching metals, dielectrics and semiconductor materials. Auxiliary RF bias energy applied to the wafer support cathode controls the cathode sheath voltage and controls the ion energy independent of density. Various magnetic and voltage processing enhancement techniques are disclosed, along with etch processes, deposition processes and combined etch/deposition processed. The disclosed invention provides processing of sensitive devices without damage and without microloading, thus providing increased yields.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: April 8, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Craig A. Roderick, John R. Trow, Chan-Lon Yang, Jerry Yuen-Kui Wong, Jeffrey Marks, Peter R. Keswick, David W. Groechel, Jay D. Pinson, II, Tetsuya Ishikawa, Lawrence Chang-Lai Lei, Masato M. Toshima
  • Patent number: 6518195
    Abstract: A domed plasma reactor chamber uses an antenna driven by RF energy (LF, MF, or VHF) which is inductively coupled inside the reactor dome. The antenna generates a high density, low energy plasma inside the chamber for etching metals, dielectrics and semiconductor materials. Auxiliary RF bias energy applied to the 10 wafer support cathode controls the cathode sheath voltage and controls the ion energy independent of density. Various magnetic and voltage processing enhancement techniques are disclosed, along with etch processes deposition processes and combined etch/deposition processed. The disclosed invention provides processing of sensitive devices without damage and without microloading, thus providing increased yields.
    Type: Grant
    Filed: February 15, 2000
    Date of Patent: February 11, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Chan-Lon Yang, Jerry Yuen-Kui Wong, Jeffrey Marks, Peter R. Keswick, David W. Groechel, Craig A. Roderick, John R. Trow, Tetsuya Ishikawa, Jay D. Pinson, II, Lawrence Chang-Lai Lei, Masato M. Toshima, Gerald Zheyao Yin
  • Patent number: 6488807
    Abstract: The invention is embodied in an RF plasma reactor for processing a semiconductor workpiece, including wall structures for containing a plasma therein, a workpiece support, a coil antenna capable of receiving a source RF power signal and being juxtaposed near the chamber, the workpiece support including a bias electrode capable of receiving a bias RF power signal, and first and second magnet structures adjacent the wall structure and in spaced relationship, with one pole of the first magnet structure facing an opposite pole of the second magnet structure, the magnet structures providing a plasma-confining static magnetic field adjacent said wall structure.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: December 3, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Chan-Lon Yang, Jerry Yuen-Kui Wong, Jeffrey Marks, Peter R. Keswick, David W. Groechel, Craig A. Roderick, John R. Trow, Tetsuya Ishikawa, Jay D. Pinson, II, Lawrence Chang-Lai Lei, Masato M. Toshima, Gerald Zheyao Yin
  • Publication number: 20020164929
    Abstract: The substrate processing system has a factory interface module, a chemical mechanical polisher, a cleaner, a particle monitor and a substrate transfer system disposed as an integrated system. The factory interface module may includes a chamber a storage station located in a chamber of the module to hold a plurality of substrates in a substantially horizontal position. The storage station may hold pad break-in wafers for pad preconditioning and/or monitor wafers for defects monitoring. The particle monitor may have a port coupled to the factory interface module.
    Type: Application
    Filed: May 21, 2002
    Publication date: November 7, 2002
    Inventors: Jay D. Pinson, Arulkumar Shanmugasundram
  • Patent number: 6413145
    Abstract: The substrate processing system has a factory interface module, a chemical mechanical polisher, a cleaner, a particle monitor and a substrate transfer system disposed as an integrated system. The factory interface module may includes a chamber a storage station located in a chamber of the module to hold a plurality of substrates in a substantially horizontal position. The storage station may hold pad break-in wafers for pad preconditioning and/or monitor wafers for defects monitoring. The particle monitor may have a port coupled to the factory interface module.
    Type: Grant
    Filed: April 5, 2000
    Date of Patent: July 2, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Jay D. Pinson, II, Arulkumar Shanmugasundram
  • Publication number: 20020004309
    Abstract: A domed plasma reactor chamber uses an antenna driven by RF energy (LF, MF, or VHF) which is inductively coupled inside the reactor dome. The antenna generates a high density, low energy plasma inside the chamber for etching metals, dielectrics and semiconductor materials. Auxiliary RF bias energy applied to the wafer support cathode controls the cathode sheath voltage and controls the ion energy independent of density. Various magnetic and voltage processing enhancement techniques are disclosed, along with etch processes, deposition processes and combined etch/deposition processed. The disclosed invention provides processing of sensitive devices without damage and without microloading, thus providing increased yields.
    Type: Application
    Filed: June 9, 1999
    Publication date: January 10, 2002
    Inventors: KENNETH S. COLLINS, CRAIG A. RODERICK, JOHN R. TROW, CHAN-LON YANG, JERRY YUEN-KUI WONG, JEFFREY MARKS, PETER R. KESWICK, DAVID W. GROECHEL, JAY D. PINSON, TETSUYA ISHIKAWA, LAWRENCE CHANG-LAI LEI, MASATO M. TOSHIMA
  • Patent number: 6251001
    Abstract: Systems and methods for polishing a substrate with reduced contamination are described. Moist air is directed to one or more surfaces in proximity to the polishing surface and exposed to airborne slurry particles generated during polishing. By maintaining the atmosphere in the vicinity of the exposed surfaces at an elevated relative humidity level, airborne slurry particles adhering to the exposed surfaces remain in suspension and, therefore, may be easily cleaned, e.g., during a high pressure rinse cycle. This feature reduces the likelihood that slurry particles will accumulate on exposed surfaces of the polishing apparatus and flake off while a substrate is being polished, reducing the likelihood of substrate defects caused by such slurry contamination.
    Type: Grant
    Filed: May 10, 1999
    Date of Patent: June 26, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Jay D. Pinson, Brian J. Brown, Thomas H. Osterheld, Benjamin A. Bonner, Doyle E. Bennett, Nitin Shah, Paul Flores