Patents by Inventor Jay Kuhn

Jay Kuhn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11853826
    Abstract: An RFID IC may operate at a relatively low clock frequency while impedance matching to an antenna is being tuned to increase the amount of power that the IC can extract from an incident RF wave. A tuning circuit tunes the impedance matching by adjusting a variable impedance coupling the IC and the antenna. The IC may power-up with a low clock frequency or reduce its current clock frequency to a lower clock frequency prior to tuning or during the tuning process, and may increase its clock frequency upon completion of tuning or during the tuning process.
    Type: Grant
    Filed: July 19, 2022
    Date of Patent: December 26, 2023
    Assignee: Impinj, Inc.
    Inventors: John D. Hyde, Shailendra Srinivas, Jay Kuhn, Ronald A. Oliver, Harley Heinrich, Theron Stanford, Christopher J. Diorio
  • Patent number: 11734540
    Abstract: Backflow in rectifiers may be reduced via biasing. Upon determining that backflow within a rectifier is likely, one or more rectifying elements in the rectifier may be debiased, via analog or digital means. The debiased rectifying elements become less conductive or nonconductive, thereby reducing or preventing backflow. The determination of backflow likelihood may be performed based on a signal to be backscattered or the amplitude-modulated envelope of an incident RF wave, and may be digital or analog in nature.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: August 22, 2023
    Assignee: Impinj, Inc.
    Inventors: Amita Patil, Jay A. Kuhn, Charles J. T. Peach, John D. Hyde, Jaskarn Johal
  • Patent number: 11705287
    Abstract: A capacitor case sealed to retain electrolyte; a sintered anode disposed in the capacitor case, the sintered anode having a shape wherein the sintered anode includes a mating portion; a conductor coupled to the sintered anode, the conductor sealingly extending through the capacitor case to a terminal disposed on an exterior of the capacitor case; a sintered cathode disposed in the capacitor case, the sintered cathode having a shape that mates with the mating portion of the sintered anode such that the sintered cathode matingly fits in the mating portion of the sintered anode; a separator between the sintered anode and the sintered cathode; and a second terminal disposed on the exterior of the capacitor case and in electrical communication with the sintered cathode, with the terminal and the second terminal electrically isolated from one another.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: July 18, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Gregory J. Sherwood, Peter Jay Kuhn, Jaymes Olson, Matthew Anderson, Brian V. Waytashek, Aaron Louis Floeter
  • Patent number: 11481591
    Abstract: Embodiments are directed to rectifiers using a single bias current or bias current path to bias multiple rectifying elements. A rectifier that has multiple rectifier stages coupled together serially includes a bias current path coupled to each of the rectifier stages. The bias current path is configured to simultaneously bias rectifying elements in each of the rectifier stages by using a bias current to bias a first rectifying element and reusing the bias current to bias other rectifying elements.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: October 25, 2022
    Assignee: Impinj, Inc.
    Inventors: Charles J. T. Peach, John D. Hyde, Jay A. Kuhn, Theron Stanford, Amita Patil
  • Patent number: 11188803
    Abstract: Backflow in rectifiers may be reduced via biasing. Upon determining that backflow within a rectifier is likely, one or more rectifying elements in the rectifier may be debiased, via analog or digital means. The debiased rectifying elements become less conductive or nonconductive, thereby reducing or preventing backflow. The determination of backflow likelihood may be performed based on a signal to be backscattered or the amplitude-modulated envelope of an incident RF wave, and may be digital or analog in nature.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: November 30, 2021
    Assignee: Impinj, Inc.
    Inventors: Amita Patil, Jay A. Kuhn, Charles J. T. Peach, John D. Hyde, Jaskarn Johal
  • Patent number: 10929734
    Abstract: An RFID IC may operate at a relatively low clock frequency while impedance matching to an antenna is being tuned to increase the amount of power that the IC can extract from an incident RF wave. A tuning circuit tunes the impedance matching by adjusting a variable impedance coupling the IC and the antenna. The IC may power-up with a low clock frequency or reduce its current clock frequency to a lower clock frequency prior to tuning or during the tuning process, and may increase its clock frequency upon completion of tuning or during the tuning process.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: February 23, 2021
    Assignee: Impinj, Inc.
    Inventors: John D. Hyde, Shailendra Srinivas, Jay Kuhn, Ronald A. Oliver, Harley Heinrich, Theron Stanford, Christopher J. Diorio
  • Patent number: 10885417
    Abstract: Embodiments are directed to mitigating power-based impedance changes in Radio Frequency Identification (RFID) tags. The intrinsic impedance of components in an RFID tag front-end may change as incident RF power on the tag changes, causing the input impedance of the front-end to change and altering the RF properties of the RFID tag. A number of approaches can be used to mitigate input impedance variations due to power variations. One approach involves adjusting the operating point of one or more components in the RFID tag front-end to change their intrinsic impedances so as to counteract or mitigate the RF-power-based input impedance variation.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: January 5, 2021
    Assignee: Impinj, Inc.
    Inventors: Theron Stanford, Charles J. T. Peach, Jay A. Kuhn, Harley K. Heinrich, John D. Hyde, Christopher J. Diorio, Alberto Pesavento
  • Patent number: 10713549
    Abstract: Embodiments are directed to rectifiers using a single bias current or bias current path to bias multiple rectifying elements. A rectifier that has multiple rectifier stages coupled together serially includes a bias current path coupled to each of the rectifier stages. Thee bias current path is configured to simultaneously bias rectifying elements in each of the rectifier stages by using a bias current to bias a first rectifying element and reusing the bias current to bias other rectifying elements.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: July 14, 2020
    Assignee: Impinj, Inc.
    Inventors: Charles J. T. Peach, John D. Hyde, Jay A. Kuhn, Theron Stanford, Amita Patil
  • Publication number: 20200219661
    Abstract: A capacitor case sealed to retain electrolyte; a sintered anode disposed in the capacitor case, the sintered anode having a shape wherein the sintered anode includes a mating portion; a conductor coupled to the sintered anode, the conductor sealingly extending through the capacitor case to a terminal disposed on an exterior of the capacitor case; a sintered cathode disposed in the capacitor case, the sintered cathode having a shape that mates with the mating portion of the sintered anode such that the sintered cathode matingly fits in the mating portion of the sintered anode; a separator between the sintered anode and the sintered cathode; and a second terminal disposed on the exterior of the capacitor case and in electrical communication with the sintered cathode, with the terminal and the second terminal electrically isolated from one another.
    Type: Application
    Filed: March 19, 2020
    Publication date: July 9, 2020
    Inventors: Gregory J. Sherwood, Peter Jay Kuhn, Jaymes Olson, Matthew Anderson, Brian V. Waytashek, Aaron Louis Floeter
  • Patent number: 10636578
    Abstract: A capacitor case sealed to retain electrolyte; a sintered anode disposed in the capacitor case, the sintered anode having a shape wherein the sintered anode includes a mating portion; a conductor coupled to the sintered anode, the conductor sealingly extending through the capacitor case to a terminal disposed on an exterior of the capacitor case; a sintered cathode disposed in the capacitor case, the sintered cathode having a shape that mates with the mating portion of the sintered anode such that the sintered cathode matingly fits in the mating portion of the sintered anode; a separator between the sintered anode and the sintered cathode; and a second terminal disposed on the exterior of the capacitor case and in electrical communication with the sintered cathode, with the terminal and the second terminal electrically isolated from one another.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: April 28, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Gregory J. Sherwood, Peter Jay Kuhn, Jaymes Olson, Matthew Anderson, Brian V. Waytashek, Aaron Louis Floeter
  • Patent number: 10572789
    Abstract: Embodiments are directed to mitigating power-based impedance changes in Radio Frequency Identification (RFID) tags. The intrinsic impedance of components in an RFID tag front-end may change as incident RF power on the tag changes, causing the input impedance of the front-end to change and altering the RF properties of the RFID tag. A number of approaches can be used to mitigate input impedance variations due to power variations. One approach involves adjusting the operating point of one or more components in the RFID tag front-end to change their intrinsic impedances so as to counteract or mitigate the RF-power-based input impedance variation.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: February 25, 2020
    Assignee: Impinj, Inc.
    Inventors: Theron Stanford, Charles J. T. Peach, Jay A. Kuhn, Harley K. Heinrich, John D. Hyde, Christopher J. Diorio, Alberto Pesavento
  • Patent number: 10445535
    Abstract: An RFID IC may operate at a relatively low clock frequency while impedance matching to an antenna is being tuned to increase the amount of power that the IC can extract from an incident RF wave. A tuning circuit tunes the impedance matching by adjusting a variable impedance coupling the IC and the antenna. The IC may power-up with a low clock frequency or reduce its current clock frequency to a lower clock frequency prior to tuning or during the tuning process, and may increase its clock frequency upon completion of tuning or during the tuning process.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: October 15, 2019
    Assignee: Impinj, Inc.
    Inventors: John D. Hyde, Shailendra Srinivas, Jay Kuhn, Ronald A. Oliver, Harley Heinrich, Theron Stanford, Christopher J. Diorio
  • Publication number: 20180358183
    Abstract: A capacitor case sealed to retain electrolyte; a sintered anode disposed in the capacitor case, the sintered anode having a shape wherein the sintered anode includes a mating portion; a conductor coupled to the sintered anode, the conductor sealingly extending through the capacitor case to a terminal disposed on an exterior of the capacitor case; a sintered cathode disposed in the capacitor case, the sintered cathode having a shape that mates with the mating portion of the sintered anode such that the sintered cathode matingly fits in the mating portion of the sintered anode; a separator between the sintered anode and the sintered cathode; and a second terminal disposed on the exterior of the capacitor case and in electrical communication with the sintered cathode, with the terminal and the second terminal electrically isolated from one another.
    Type: Application
    Filed: August 21, 2018
    Publication date: December 13, 2018
    Inventors: Gregory J. Sherwood, Peter Jay Kuhn, Jaymes Olson, Matthew Anderson, Brian V. Waytashek, Aaron Louis Floeter
  • Patent number: 10083798
    Abstract: A capacitor case sealed to retain electrolyte; a sintered anode disposed in the capacitor case, the sintered anode having a shape wherein the sintered anode includes a mating portion; a conductor coupled to the sintered anode, the conductor sealingly extending through the capacitor case to a terminal disposed on an exterior of the capacitor case; a sintered cathode disposed in the capacitor case, the sintered cathode having a shape that mates with the mating portion of the sintered anode such that the sintered cathode matingly fits in the mating portion of the sintered anode; a separator between the sintered anode and the sintered cathode; and a second terminal disposed on the exterior of the capacitor case and in electrical communication with the sintered cathode, with the terminal and the second terminal electrically isolated from one another.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: September 25, 2018
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Gregory J. Sherwood, Peter Jay Kuhn, Jaymes Olson, Matthew Anderson, Brian V. Waytashek, Aaron Floeter
  • Patent number: 10002266
    Abstract: An RFID IC may operate at a relatively low clock frequency while impedance matching to an antenna is being tuned to increase the amount of power that the IC can extract from an incident RF wave. A tuning circuit tunes the impedance matching by adjusting a variable impedance coupling the IC and the antenna. The IC may power-up with a low clock frequency or reduce its current clock frequency to a lower clock frequency prior to tuning or during the tuning process, and may increase its clock frequency upon completion of tuning or during the tuning process.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: June 19, 2018
    Assignee: Impinj, Inc.
    Inventors: John D. Hyde, Shailendra Srinivas, Jay Kuhn, Ronald A Oliver, Harley Heinrich, Theron Stanford, Christopher J. Diorio
  • Patent number: 9886658
    Abstract: Embodiments are directed to mitigating power-based impedance changes in Radio Frequency Identification (RFID) tags. The intrinsic impedance of components in an RFID tag front-end may change as incident RF power on the tag changes, causing the input impedance of the front-end to change and altering the RF properties of the RFID tag. A number of approaches can be used to mitigate input impedance variations due to power variations. One approach involves adjusting the operating point of one or more components in the RFID tag front-end to change their intrinsic impedances so as to counteract or mitigate the RF-power-based input impedance variation.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: February 6, 2018
    Assignee: IMPINJ, INC
    Inventors: Theron Stanford, Charles J. T. Peach, Jay A. Kuhn, Harley K. Heinrich, John D. Hyde, Christopher J. Diorio, Alberto Pesavento
  • Patent number: 9607191
    Abstract: Data stored in nonvolatile memory on a Radio Frequency Identification (RFID) tag integrated circuit may have a “margin” associated with how strongly the data is written to the memory. Upon receiving a wireless margin read command, the RFID IC determines whether the margin for one of more data values stored in memory exceeds a margin threshold. The IC may determine the margin by applying bias voltages or currents to the memory cells storing the data values. If the determined margin does not exceed the margin threshold, the IC may respond with an error code.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: March 28, 2017
    Assignee: Impinj, Inc.
    Inventors: Charles Peach, Alberto Pesavento, Theron Stanford, Jay Kuhn, Christopher Diorio
  • Publication number: 20170076871
    Abstract: An apparatus including a capacitor case sealed to retain electrolyte; a plurality of sintered anodes disposed in the capacitor case, each of the plurality of sintered anodes having a hole at least partially through the sintered anode; and at least one post placed through the holes of the plurality of sintered anodes to electrically couple the sintered anodes.
    Type: Application
    Filed: September 16, 2016
    Publication date: March 16, 2017
    Inventors: Gregory J. Sherwood, Peter Jay Kuhn, Jaymes Olson, Matthew Anderson, Brian V. Waytashek, Aaron Floeter
  • Publication number: 20170076873
    Abstract: A capacitor case sealed to retain electrolyte; a sintered anode disposed in the capacitor case, the sintered anode having a shape wherein the sintered anode includes a mating portion; a conductor coupled to the sintered anode, the conductor sealingly extending through the capacitor case to a terminal disposed on an exterior of the capacitor case; a sintered cathode disposed in the capacitor case, the sintered cathode having a shape that mates with the mating portion of the sintered anode such that the sintered cathode matingly fits in the mating portion of the sintered anode; a separator between the sintered anode and the sintered cathode; and a second terminal disposed on the exterior of the capacitor case and in electrical communication with the sintered cathode, with the terminal and the second terminal electrically isolated from one another.
    Type: Application
    Filed: September 16, 2016
    Publication date: March 16, 2017
    Inventors: Gregory J. Sherwood, Peter Jay Kuhn, Jaymes Olson, Matthew Anderson, Brian V. Waytashek, Aaron Floeter
  • Patent number: RE47755
    Abstract: An RFID tag tuning circuit may be capable of adjusting the impedance matching between an RFID integrated circuit (IC) and an antenna on an RFID tag to increase the amount of power that the IC can extract from an incident RF wave. The tuning circuit switches a variable impedance coupling the antenna and the IC between several different impedance settings, where each impedance setting differs from an adjacent impedance setting by a respective impedance step size and at least one impedance step size has a different value than another impedance step size. The tuning circuit may switch the variable impedance by incrementing through a counter, decrementing through the counter, or performing some search algorithm. The tuning circuit may also initialize the variable impedance based on a default impedance setting or a random impedance setting derived from a random counter.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: December 3, 2019
    Assignee: Impinj, Inc.
    Inventors: John Hyde, Jay Kuhn, Theron Stanford, Harley Heinrich, Christopher Diorio, Ronald A. Oliver