Patents by Inventor Jay Small

Jay Small has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240113488
    Abstract: Some embodiments may include an apparatus usable in a laser system. The apparatus may include at least one optical filter to receive a laser beam or laser light along a first axis, the laser beam or laser light generated by the laser system, wherein the at least one optical filter is configured to reflect one of light having a selected wavelength or a remainder of the laser light along a second axis that is non-parallel with the first axis and pass the other of the light having the selected wavelength or the remainder along a third axis that is parallel to the first axis. Other embodiments may be disclosed and/or claimed.
    Type: Application
    Filed: August 6, 2021
    Publication date: April 4, 2024
    Applicant: NLIGHT, INC.
    Inventors: Scott R. Karlsen, Aaron BROWN, Jay SMALL, Stefano ORIGLIA, Andrea BRAGLIA
  • Publication number: 20240072504
    Abstract: Some embodiments may include an optical assembly usable to process light output from a laser source. The apparatus may include a housing to receive a distal end of an optical fiber that outputs the laser light; one or more actively cooled or passively cooled beam traps contained within the housing or coupled to the housing; and one or more optical apertures located inside the housing, at least one of the optical apertures to define a numerical aperture (NA) of a first portion of the laser light based on a radial dimension of the at least one optical aperture, the at least one optical aperture arranged to pass the first portion of the light and redirect a second different portion of the laser light to the one or more actively cooled or passively cooled beam traps. Other embodiments may be disclosed and/or claimed.
    Type: Application
    Filed: January 10, 2022
    Publication date: February 29, 2024
    Applicant: NLIGHT, INC.
    Inventors: Aaron Brown, Jay SMALL, Kevin Michael CARBONE, Stefano ORIGLIA, Francesco PESCARMONA
  • Publication number: 20230402811
    Abstract: Some embodiments may include a fiber laser having an input end to receive source light from a light source and an output end including: a feeding optic fiber including a cladding layer and an interior surrounded by the cladding layer, wherein the interior emits a beam at an end of the feeding optic and the cladding layer receives process light at the end of the feeding optic, the process light generated by processing of a workpiece by the beam; and a notch or other discontinuity in an outer surface of a side of the cladding layer, the surface discontinuity to release a portion of the process light, the apparatus further comprising: a collection optic fiber having a first end to capture a sample of the released process light and a second end to provide the captured sample to a sensor. Other embodiments may be disclosed and/or claimed.
    Type: Application
    Filed: March 12, 2021
    Publication date: December 14, 2023
    Applicant: NIGHT, INC.
    Inventors: C. Geoffrey Fanning, Jay SMALL, Kevin Michael CARBONE, Sean R. GALLIVAN
  • Publication number: 20230359051
    Abstract: Angularly homogenizing gradient index optical fiber having a refractive index profile that is non-quadratic to a degree sufficient to enhance precession of light as it is propagated through the fiber. Deviation from the quadratic may be limited to avoid profoundly changing the radial boundary within the fiber. Beam asymmetry, for example, associated with small aperture sources launched into a fiber off axis, may be made more symmetric as the beam is propagated through the homogenizing gradient index optical fiber. A refractive index profile may be manufactured to avoid a pure quadratic profile, or a fiber having a refractive index profile that is quadratic in only some orientations about the fiber axis may be twisted during draw to induce a refractive index profile path that enhances propagation precession.
    Type: Application
    Filed: November 19, 2020
    Publication date: November 9, 2023
    Applicant: NLIGHT, INC.
    Inventors: Jay SMALL, Shuang LI, Dahv A.V. KLINER
  • Publication number: 20230152574
    Abstract: Some embodiments may include a method assessing whether a dynamic focus module in a three axis galvanometric scanning system (three-axis GSS) is associated with a focus calibration error. The method may include identifying a reference layer associated with a surface of the work piece and positive and negative offset distances each a difference distance above or below the reference layer, respectively, and selecting a target pattern based on the offset distances, wherein the pattern includes an individual line for each offset distance. The method may include commanding the three-axis GSS to draw the target pattern on the work piece, and then assessing whether the dynamic focus module is associated with the focus calibration error by correlating laser marking artifacts on the work piece to ones of the individual lines of the selected pattern. Other embodiments may be disclosed and/or claimed.
    Type: Application
    Filed: November 14, 2022
    Publication date: May 18, 2023
    Applicant: NLIGHT, INC.
    Inventors: Jay Small, Ken Gross
  • Patent number: 11579440
    Abstract: Some embodiments may include a method assessing whether a dynamic focus module in a three axis galvanometric scanning system (three-axis GSS) is associated with a focus calibration error. The method may include identifying a reference layer associated with a surface of the work piece and positive and negative offset distances each a difference distance above or below the reference layer, respectively, and selecting a target pattern based on the offset distances, wherein the pattern includes an individual line for each offset distance. The method may include commanding the three-axis GSS to draw the target pattern on the work piece, and then assessing whether the dynamic focus module is associated with the focus calibration error by correlating laser marking artifacts on the work piece to ones of the individual lines of the selected pattern. Other embodiments may be disclosed and/or claimed.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: February 14, 2023
    Assignee: NLIGHT, INC.
    Inventors: Jay Small, Ken Gross
  • Patent number: 11525968
    Abstract: Some embodiments may include a method of generating assessment data in a system including a galvanometric scanning system (GSS) having a laser device to generate a laser beam and an X-Y scan head module to position the laser beam on a work piece. The method may include selecting a dimension based on a desired accuracy for validation (and/or a characteristic of an imaging system in embodiments that utilize an imaging system). The method may include commanding the GSS to draw a mark based on a polygon or ellipse of the selected dimension around a predetermined target point associated with the work piece to generate assessment data, and following operation of the GSS based on said commanding, validating a calibration of the GSS using the assessment data (or an image thereof in embodiments that utilize an imaging system). Other embodiments may be disclosed and/or claimed.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: December 13, 2022
    Assignee: NLIGHT, INC.
    Inventors: Jay Small, Ken Gross
  • Publication number: 20220382028
    Abstract: Apparatus include a transmissive optical substrate configured to receive a plurality of laser beams propagating along respective parallel beam axes at respective initial beam displacements with respect to an optical axis of the transmissive optical substrate, and configured to produce laser output beams having reduced displacements, wherein the transmissive optical substrate includes first and second surfaces with respective first and second curvatures defined to increase an output beam magnification and to nonlinearly increase an output beam displacement from the optical axis for a linearly increasing input beam displacement from the optical axis.
    Type: Application
    Filed: August 14, 2020
    Publication date: December 1, 2022
    Applicant: nLIGHT, Inc.
    Inventors: Jay Small, Zhigang Chen, Manoj Kanskar
  • Publication number: 20220385043
    Abstract: Apparatus include a plurality of laser diodes configured to emit respective laser diode beams having perpendicular fast and slow beam divergence axes mutually perpendicular to respective beam axes, and beam shaping optics configured to receive the laser diode beams and to circularize an ensemble image space and NA space of the laser diode beams at an ensemble coupling plane. In selected examples, beam shaping optics include variable fast axis telescopes configured to provide variable fast axis magnification and beam displacement.
    Type: Application
    Filed: August 14, 2020
    Publication date: December 1, 2022
    Applicant: nLIGHT, Inc.
    Inventors: Zhigang Chen, Jay Small, Manoj Kanskar
  • Publication number: 20220241859
    Abstract: Disclosed are techniques for generating a laser output beam having a functionally homogenized intensity distribution. According to some embodiments, a population of few modes in a multi-mode confinement core is excited by application of a low-moded source beam to the multi-mode confinement core, such that the population exhibit an unstable intensity distribution. The unstable intensity distribution is functionally homogenized by providing one or both of modulation of phase displacement in the multi-mode confinement core and variation of launch conditions of the low-moded source beam into the multi-mode confinement core.
    Type: Application
    Filed: June 24, 2020
    Publication date: August 4, 2022
    Applicant: nLIGHT, Inc.
    Inventors: Juan Lugo, Aaron W. Brown, Jay Small, Robert J. Martinsen, Dahv A.V. Kliner
  • Patent number: 11389896
    Abstract: Some embodiments may include a galvanometric laser system, comprising: a laser device to generate a laser beam; an X-Y scan head module to position the laser beam on a work piece, the X-Y scan head module including a laser ingress to receive the laser beam and a laser egress to output the laser beam; a support platen located below the laser egress; an in-machine imaging system integrated with the galvanometric laser, wherein a camera of the in-machine imaging system is arranged to view a surface of an object located on the support platen using one or more optical components of the X-Y scan head module to generate assessment data associated with a calibration of the X-Y scan head module by imaging the surface of the object, wherein a calibration fiducial is located on the surface of the object.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: July 19, 2022
    Assignee: NLIGHT, INC.
    Inventors: Aaron Brown, Jay Small, Robert J. Martinsen
  • Publication number: 20220143700
    Abstract: An apparatus includes an optical source situated to produce a fiducial source beam, and an optical fiducial pattern generator situated to produce with the fiducial source beam at least one transient optical fiducial on a laser processing target that is in a field of view of a laser scanner situated to scan a laser processing beam across the laser processing target, so that a positioning of the laser processing beam on the laser processing target becomes adjustable relative to the at least one transient optical fiducial.
    Type: Application
    Filed: October 14, 2021
    Publication date: May 12, 2022
    Inventors: Jay Small, Robert J. Martinsen
  • Publication number: 20220094134
    Abstract: Apparatus include a first optical fiber including a core situated to propagate a signal beam at a signal wavelength and an unwanted stimulated Raman scattering (SRS) beam at an SRS wavelength associated with the signal wavelength, and a fiber Bragg grating (FBG) situated in a core of a second optical fiber optically coupled to the core of the first optical fiber, the FBG having a selected grating reflectivity associated with the SRS wavelength and being situated to reflect the SRS beam back along the core of the second optical fiber and to reduce a damage associated with propagation of the SRS beam to power sensitive laser system components optically coupled to the second optical fiber. Methods are also disclosed.
    Type: Application
    Filed: December 31, 2019
    Publication date: March 24, 2022
    Applicant: nLIGHT, Inc.
    Inventors: C. Geoffrey Fanning, Jay Small, Dahv A.V. Kliner, Chris A. Rivera
  • Patent number: 11173548
    Abstract: An apparatus includes an optical source situated to produce a fiducial source beam, and an optical fiducial pattern generator situated to produce with the fiducial source beam at least one transient optical fiducial on a laser processing target that is in a field of view of a laser scanner situated to scan a laser processing beam across the laser processing target, so that a positioning of the laser processing beam on the laser processing target becomes adjustable relative to the at least one transient optical fiducial.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: November 16, 2021
    Assignee: nLIGHT, Inc.
    Inventors: Jay Small, Robert J. Martinsen
  • Publication number: 20210126435
    Abstract: Apparatus include a first laser diode situated to emit a beam from an exit facet along an optical axis, the beam as emitted having perpendicular fast and slow axes perpendicular to the optical axis, a first fast axis collimator (FAC) optically coupled to the beam as emitted from the exit facet and configured to direct the beam along a redirected beam axis having a non-zero angle with respect to the optical axis of the first laser diode, a second laser diode situated to emit a beam from an exit facet of the second laser diode along an optical axis parallel to the optical axis of the first laser diode and with a slow axis in a common plane with the slow axis of the first laser diode, and a second fast axis collimator (FAC) optically coupled to the beam as emitted from the exit facet of the second laser diode and configured to direct the beam along a redirected beam axis having a non-zero angle with respect to the optical axis of the second laser diode.
    Type: Application
    Filed: November 9, 2020
    Publication date: April 29, 2021
    Applicant: nLIGHT, Inc.
    Inventors: Zhigang Chen, Manoj Kanskar, Shuang Li, Jim Zhang, Mark DeFranza, David Martin Hemenway, Eric Martin, Jay Small
  • Publication number: 20200371285
    Abstract: An apparatus for scattering light may include: an optical fiber having a first length; and a sleeve, having a second length shorter than the first length, around the optical fiber. The optical fiber may include: a core; and cladding around the core. The sleeve may include fiber-optic material. The fiber-optic material may be substantially polymer-free. An outer surface of the sleeve may be roughened to scatter the light out of the sleeve through the roughened surface. A method of forming an apparatus for scattering light may include: providing a sleeve having a first length, the sleeve having inner and outer surfaces; providing an optical fiber having a second length longer than the first length; passing the sleeve around the optical fiber or threading the optical fiber through the sleeve; and roughening at least a portion of the outer surface of the sleeve.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 26, 2020
    Applicant: NLIGHT, INC.
    Inventors: Manoj KANSKAR, Shuang LI, Eric MARTIN, Jay SMALL, Jiamin ZHANG
  • Patent number: 10833482
    Abstract: Apparatus include a first laser diode situated to emit a beam from an exit facet along an optical axis, the beam as emitted having perpendicular fast and slow axes perpendicular to the optical axis, a first fast axis collimator (FAC) optically coupled to the beam as emitted from the exit facet and configured to direct the beam along a redirected beam axis having a non-zero angle with respect to the optical axis of the first laser diode, a second laser diode situated to emit a beam from an exit facet of the second laser diode along an optical axis parallel to the optical axis of the first laser diode and with a slow axis in a common plane with the slow axis of the first laser diode, and a second fast axis collimator (FAC) optically coupled to the beam as emitted from the exit facet of the second laser diode and configured to direct the beam along a redirected beam axis having a non-zero angle with respect to the optical axis of the second laser diode.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: November 10, 2020
    Assignee: nLIGHT, Inc.
    Inventors: Zhigang Chen, Manoj Kanskar, Shuang Li, Jim Zhang, Mark DeFranza, David Martin Hemenway, Eric Martin, Jay Small
  • Publication number: 20200292765
    Abstract: Some embodiments may include a method of generating assessment data in a system including a galvanometric scanning system (GSS) having a laser device to generate a laser beam and an X-Y scan head module to position the laser beam on a work piece. The method may include selecting a dimension based on a desired accuracy for validation (and/or a characteristic of an imaging system in embodiments that utilize an imaging system). The method may include commanding the GSS to draw a mark based on a polygon or ellipse of the selected dimension around a predetermined target point associated with the work piece to generate assessment data, and following operation of the GSS based on said commanding, validating a calibration of the GSS using the assessment data (or an image thereof in embodiments that utilize an imaging system). Other embodiments may be disclosed and/or claimed.
    Type: Application
    Filed: March 12, 2020
    Publication date: September 17, 2020
    Applicant: NLIGHT, INC.
    Inventors: Jay Small, Ken Gross
  • Publication number: 20200292806
    Abstract: Some embodiments may include a method assessing whether a dynamic focus module in a three axis galvanometric scanning system (three-axis GSS) is associated with a focus calibration error. The method may include identifying a reference layer associated with a surface of the work piece and positive and negative offset distances each a difference distance above or below the reference layer, respectively, and selecting a target pattern based on the offset distances, wherein the pattern includes an individual line for each offset distance. The method may include commanding the three-axis GSS to draw the target pattern on the work piece, and then assessing whether the dynamic focus module is associated with the focus calibration error by correlating laser marking artifacts on the work piece to ones of the individual lines of the selected pattern. Other embodiments may be disclosed and/or claimed.
    Type: Application
    Filed: March 12, 2020
    Publication date: September 17, 2020
    Applicant: NLIGHT, INC.
    Inventors: Jay Small, Ken Gross
  • Patent number: 10739579
    Abstract: A method includes determining a set of pattern position errors between (i) a set of expected pattern positions of a calibration pattern on a laser target situated in a laser processing field of a laser system and produced based on a set of initial scan optic actuation corrections associated with a scan optic of the laser system and (ii) a set of measured pattern positions of the calibration pattern, determining a set of scan optic actuation rates based on the set of initial scan optic actuation corrections, and updating the set of initial scan optic actuation corrections based on the set of scan optic actuation rates and the set of pattern position errors so as to form a set of updated scan optic actuation corrections that is associated with a reduction of at least a portion of the set of pattern position errors.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: August 11, 2020
    Assignee: nLIGHT, Inc.
    Inventors: Jay Small, Ken Gross, Vito P. Errico