Patents by Inventor Jay W. Dawson

Jay W. Dawson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11909166
    Abstract: The present technology provides large mode area optical fibers engineered to have normal dispersion around 1600 nm, enabling high power Raman amplification at eye safer wavelengths. The fibers can have a main core and one or more side cores disposed relative to the main core so that modes of the main core and the one or more side cores hybridize into supermodes with modified dispersion.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: February 20, 2024
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Paul H. Pax, Jay W. Dawson, Victor V. Khitrov, Cody W. Mart, Michael J. Messerly, Michael Runkel, Charles X. Yu
  • Patent number: 11655183
    Abstract: The present disclosure relates to a method for forming a glass, ceramic or composite material. The method may involve initially forming a plurality of tubes and then performing a coating operation to coat the plurality of tubes with materials containing metal or metalloid elements, including inorganic compounds, organometallic compounds, or coordination complexes to form coated tubes. The method may further include performing at least one of a thermal operation or a thermochemical operation on the coated tubes to form a solid glass, ceramic, or composite structure with dimensions representing at least one of a rod or fiber.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: May 23, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Andrew Lange, Jay W. Dawson, Rebecca Dylla-Spears, Cody Wren Mart, Michael J. Messerly, Koroush Sasan, Nick Schenkel, Tayyab I. Suratwala
  • Patent number: 11460639
    Abstract: An all fiber wavelength selective coupler provides wavelength selective transfer of optical energy between two or more separated waveguides. The coupler includes signal cores that are separated enough that they can be fusion spliced to standard fibers as lead-in and lead-out pigtails. A bridge between the signal cores facilitates transfer of the optical energy through a process of evanescent coupling. In one example, the bridge is formed of a series of graded index cores.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: October 4, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Graham S. Allen, Diana C. Chen, Matthew J. Cook, Robert P. Crist, Derrek R. Drachenberg, Jay W. Dawson, Victor V. Khitrov, Leily Kiani, Michael J. Messerly, Paul H. Pax, Nick Schenkel
  • Patent number: 11374378
    Abstract: The present disclosure relates to an optical waveguide system. The system has a first waveguide having a core-guide and a cladding material portion surrounding and encasing the core-guide to form a substantially D-shaped cross sectional profile with an exposed flat section running along a length thereof. The core-guide enables a core-guide mode for an optical pulse signal having a first characteristic, travelling through the core-guide. A material layer of non-linear material is used which forms a second waveguide. The material layer is disposed on the exposed flat section of the cladding material portion. The material layer forms a plasmonic device to achieve a desired coupling with the core-guide to couple optical energy travelling through the core-guide into the material layer to modify the optical energy travelling through the core-guide such that the optical energy travelling through the core-guide has a second characteristic different from the first characteristic.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: June 28, 2022
    Assignees: Lawrence Livermore National Security, LLC, Board of Visitors of Norfolk State University
    Inventors: Eyal Feigenbaum, Graham S. Allen, Jay W. Dawson, Mikhail A. Noginov
  • Patent number: 11340396
    Abstract: A class of fibers is described that have a non-circular cross section on one or both ends that can by optimized to capture the optical radiation from a laser diode or diode array and deliver the light in the same or different shape on the opposite end of the fiber. A large multimode rectangular waveguide may be provided which can accept the radiation from a high-power diode bar and transform it into a circular cross section on the opposite end, while preserving brightness.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: May 24, 2022
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Derrek R. Drachenberg, Graham S. Allen, Diana C. Chen, Matthew J. Cook, Robert P. Crist, Jay W. Dawson, Leily Kiani, Michael J. Messerly, Paul H. Pax, Nick Schenkel, Charles X. Yu
  • Patent number: 11269137
    Abstract: A non-radial array of microstructure elements provides enhanced wavelength selective filtering. The elements are arranged along a line that does not intersect the center of the core. In this configuration, the first coupling element in an array that is nearest to the core is a non-integer array unit spacing from the main waveguide where the array unit spacing is defined as the flat to flat distance of a hexagonal cell.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: March 8, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Leily S. Kiani, Jay W. Dawson, Derrek R. Drachenberg, Michael J. Messerly, Paul H. Pax
  • Publication number: 20210387903
    Abstract: The present disclosure relates to a method for forming a glass, ceramic or composite material. The method may involve initially forming a plurality of tubes and then performing a coating operation to coat the plurality of tubes with materials containing metal or metalloid elements, including inorganic compounds, organometallic compounds, or coordination complexes to form coated tubes. The method may further include performing at least one of a thermal operation or a thermochemical operation on the coated tubes to form a solid glass, ceramic, or composite structure with dimensions representing at least one of a rod or fiber.
    Type: Application
    Filed: June 11, 2020
    Publication date: December 16, 2021
    Inventors: Andrew LANGE, Jay W. DAWSON, Rebecca DYLLA-SPEARS, Cody Wren MART, Michael J. MESSERLY, Koroush SASAN, Nick SCHENKEL, Tayyab I. SURATWALA
  • Publication number: 20210373229
    Abstract: A non-radial array of microstructure elements provides enhanced wavelength selective filtering. The elements are arranged along a line that does not intersect the center of the core. In this configuration, the first coupling element in an array that is nearest to the core is a non-integer array unit spacing from the main waveguide where the array unit spacing is defined as the flat to flat distance of a hexagonal cell.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 2, 2021
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Leily S. Kiani, Jay W. Dawson, Derrek R. Drachenberg, Michael J. Messerly, Paul H. Pax
  • Publication number: 20210359484
    Abstract: The present technology provides large mode area optical fibers engineered to have normal dispersion around 1600 nm, enabling high power Raman amplification at eye safer wavelengths. The fibers can have a main core and one or more side cores disposed relative to the main core so that modes of the main core and the one or more side cores hybridize into supermodes with modified dispersion.
    Type: Application
    Filed: May 11, 2021
    Publication date: November 18, 2021
    Inventors: Paul H. Pax, Jay W. Dawson, Victor V. Khitrov, Cody W. Mart, Michael J. Messerly, Michael Runkel, Charles X. Yu
  • Patent number: 11095085
    Abstract: The present disclosure relates to a laser system. The laser system may have at least non-flat gain media disc. At least one pump source may be configured to generate a beam that pumps the non-flat gain media disc. A laser cavity may be formed by the pump source and the non-flat gain media disc. An output coupler may be included for receiving and directing the output beam toward an external component.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: August 17, 2021
    Assignees: Lawrence Livermore National Security, LLC, The Government of the United States as represented by the Secretary of the Navy
    Inventors: Jay W. Dawson, Ronald Lacomb
  • Patent number: 10978849
    Abstract: A high-power laser beam with an arbitrary intensity profile is produced. Such beam has a variety of uses including for laser materials processing such as powder bed fusion additive manufacturing. Several challenges in additive manufacturing are mitigated with the present non-uniform intensity laser profiles. Nonuniform shapes include a set of intensity pixels in a line that could print a wide stripe area instead of just a single line. One example uses the multimode interference pattern from the output of a ribbon fiber which is imaged onto a work piece. The interference pattern is controlled to allow turning on or off of ‘pixels’ along a line which can be used to shape the beam and form the additively manufactured part.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: April 13, 2021
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Derrek R. Drachenberg, Jay W. Dawson, Gabriel M. Guss, Paul H. Pax, Alexander M. Rubenchik, Manyilibo J. Matthews
  • Publication number: 20210057870
    Abstract: The present disclosure relates to an optical waveguide system. The system has a first waveguide having a core-guide and a cladding material portion surrounding and encasing the core-guide to form a substantially D-shaped cross sectional profile with an exposed flat section running along a length thereof. The core-guide enables a core-guide mode for an optical pulse signal having a first characteristic, travelling through the core-guide. A material layer of non-linear material is used which forms a second waveguide. The material layer is disposed on the exposed flat section of the cladding material portion. The material layer forms a plasmonic device to achieve a desired coupling with the core-guide to couple optical energy travelling through the core-guide into the material layer to modify the optical energy travelling through the core-guide such that the optical energy travelling through the core-guide has a second characteristic different from the first characteristic.
    Type: Application
    Filed: August 21, 2020
    Publication date: February 25, 2021
    Inventors: Eyal FEIGENBAUM, Graham S. ALLEN, Jay W. DAWSON, Mikhail A. NOGINOV
  • Patent number: 10897116
    Abstract: A uniform temperature profile is provided across the width of the core of a ribbon fiber laser or amplifier by the use of insulating elements at the core edges and a spatially variable gain in the fiber core. High average power ribbon fibers, enable a variety of applications such as practical laser cutting and beam combining.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: January 19, 2021
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Derrek R. Drachenberg, Jay W. Dawson, Michael J. Messerly, Paul H. Pax
  • Patent number: 10756503
    Abstract: The present disclosure relates to an optical waveguide system. The system may include a first waveguide having a core-guide and a material portion surrounding and encasing the core-guide. The core-guide enables a core-guide mode for an optical signal travelling through the core-guide. A second waveguide forms a lossy waveguide on an outer surface of the first waveguide. The construction of the second waveguide is such as to achieve a desired coupling between the core-guide mode and the lossy waveguide to control an energy level of the optical signal travelling through the core-guide.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: August 25, 2020
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Eyal Feigenbaum, Graham S. Allen, Jay W. Dawson, Mikhail A. Noginov
  • Publication number: 20200251872
    Abstract: A high-power laser beam with an arbitrary intensity profile is produced. Such beam has a variety of uses including for laser materials processing such as powder bed fusion additive manufacturing. Several challenges in additive manufacturing are mitigated with the present non-uniform intensity laser profiles. Nonuniform shapes include a set of intensity pixels in a line that could print a wide stripe area instead of just a single line. One example uses the multimode interference pattern from the output of a ribbon fiber which is imaged onto a work piece. The interference pattern is controlled to allow turning on or off of ‘pixels’ along a line which can be used to shape the beam and form the additively manufactured part.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 6, 2020
    Applicant: Lawrence Livermore National Security, LLC.
    Inventors: Derrek R. Drachenberg, Jay W. Dawson, Gabriel M. Guss, Paul H. Pax, Alexander M. Rubenchik, Manyilibo J. Matthews
  • Publication number: 20200132925
    Abstract: A class of fibers is described that have a non-circular cross section on one or both ends that can by optimized to capture the optical radiation from a laser diode or diode array and deliver the light in the same or different shape on the opposite end of the fiber. A large multimode rectangular waveguide may be provided which can accept the radiation from a high-power diode bar and transform it into a circular cross section on the opposite end, while preserving brightness.
    Type: Application
    Filed: July 5, 2018
    Publication date: April 30, 2020
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Derrek R. Drachenberg, Graham S. Alien, Diana C. Chen, Matthew J. Cook, Robert P. Crist, Jay W. Dawson, Leily Kiani, Michael J. Messerly, Paul H. Pax, Nick Schenkel, Charles X. Yu, Victor V. Khitrov
  • Publication number: 20200028315
    Abstract: The present disclosure relates to an optical waveguide system. The system may include a first waveguide having a core-guide and a material portion surrounding and encasing the core-guide. The core-guide enables a core-guide mode for an optical signal travelling through the core-guide. A second waveguide forms a lossy waveguide on an outer surface of the first waveguide. The construction of the second waveguide is such as to achieve a desired coupling between the core-guide mode and the lossy waveguide to control an energy level of the optical signal travelling through the core-guide.
    Type: Application
    Filed: July 17, 2018
    Publication date: January 23, 2020
    Inventors: Eyal FEIGENBAUM, Graham S. ALLEN, Jay W. DAWSON, Mikhail A. NOGINOV
  • Publication number: 20190393667
    Abstract: The present disclosure relates to a laser system. The laser system may have at least non-flat gain media disc. At least one pump source may be configured to generate a beam that pumps the non-flat gain media disc. A laser cavity may be formed by the pump source and the non-flat gain media disc. An output coupler may be included for receiving and directing the output beam toward an external component.
    Type: Application
    Filed: January 25, 2018
    Publication date: December 26, 2019
    Applicants: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, THE GOVERNMENT OF UNITED STATES AS REPRESENTED BY THE SECRETARY OF THE NAVY
    Inventors: Jay W. DAWSON, Ronald LACOMB
  • Publication number: 20190310420
    Abstract: An all fiber wavelength selective coupler provides wavelength selective transfer of optical energy between two or more separated waveguides. The coupler includes signal cores that are separated enough that they can be fusion spliced to standard fibers as lead-in and lead-out pigtails. A bridge between the signal cores facilitates transfer of the optical energy through a process of evanescent coupling. In one example, the bridge is formed of a series of graded index cores.
    Type: Application
    Filed: June 18, 2019
    Publication date: October 10, 2019
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Graham S. Allen, Diana C. Chen, Matthew J. Cook, Robert P. Crist, Derrek R. Drachenberg, Jay W. Dawson, Victor V. Khitrov, Leily Kiani, Michael J. Messerly, Paul H. Pax, Nick Schenkel
  • Patent number: 10348050
    Abstract: An Nd3+ optical fiber laser and amplifier operating in the wavelength range from 1300 to 1450 nm is described. The fiber includes a rare earth doped optical amplifier or laser operating within this wavelength band is based upon an optical fiber that guides light in this wavelength band. The waveguide structure attenuates light in the wavelength range from 850 nm to 950 nm and from 1050 nm to 1150 nm.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: July 9, 2019
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Jay W Dawson, Graham S Allen, Derrek Reginald Drachenberg, Victor V Khitrov, Michael J Messerly, Paul H Pax, Nick Schenkel