Patents by Inventor Jay W. Dawson

Jay W. Dawson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190199050
    Abstract: A uniform temperature profile is provided across the width of the core of a ribbon fiber laser or amplifier by the use of insulating elements at the core edges and a spatially variable gain in the fiber core. High average power ribbon fibers, enable a variety of applications such as practical laser cutting and beam combining.
    Type: Application
    Filed: December 26, 2017
    Publication date: June 27, 2019
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Derrek R. Drachenberg, Jay W. Dawson, Michael J. Messerly, Paul H. Pax
  • Patent number: 10222253
    Abstract: A system for aerially surveying an area where a plane may have crashed in water and locating pings from the plane's black box using a laser on an aerial platform that produces laser pulses; using a launch telescope to direct the laser pulses to the water producing scattering from the laser pulses and a continuous stream of backscatter; using a receiving telescope to collect the continuous stream of backscatter; using an interferometer operatively connected to the receiving telescope to produce two outputs, wherein one output is the continuous stream of backscatter, and wherein the other output is a delayed replica of the first output; and using a data collection and analysis unit operatively connected to the interferometer to produce a measurement of the sound.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: March 5, 2019
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Jay W. Dawson, Graham S. Allen, Michael R. Carter, John E. Heebner, Michael J. Messerly, Paul H. Pax, Alexander M. Rubenchik
  • Patent number: 10033148
    Abstract: Rare earth doped fiber lasers can be robust and efficient sources of high quality light, but are usually limited to the highest gain transitions of the active species. But rare earths typically possess a multitude of potentially useful transitions that might be accessed if the dominant transition can be suppressed. In fiber lasers this suppression is complicated by the very high net gain the dominant transitions exhibit; effective suppression requires some mechanism distributed along the length of the fiber. We have developed a novel waveguide with resonant leakage elements that frustrate guidance at well-defined and selectable wavelengths. Based on this waveguide, we have fabricated a Large Mode Area Neodymium doped fiber with suppression of the four-level transition around 1060 nm, and demonstrated lasing on the three-level transition at 930 nm with good efficiency.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: July 24, 2018
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Paul H Pax, Graham S Allen, Jay W Dawson, Derrek Reginald Drachenberg, Victor V Khitrov, Michael J Messerly, Nick Schenkel
  • Publication number: 20180045544
    Abstract: A system for aerially surveying an area where a plane may have crashed in water and locating pings from the plane's black box using a laser on an aerial platform that produces laser pulses; using a launch telescope to direct the laser pulses to the water producing scattering from the laser pulses and a continuous stream of backscatter; using a receiving telescope to collect the continuous stream of backscatter; using an interferometer operatively connected to the receiving telescope to produce two outputs, wherein one output is the continuous stream of backscatter, and wherein the other output is a delayed replica of the first output; and using a data collection and analysis unit operatively connected to the interferometer to produce a measurement of the sound.
    Type: Application
    Filed: June 7, 2016
    Publication date: February 15, 2018
    Inventors: Jay W. Dawson, Graham S. Allen, Michael R. Carter, John E. Heebner, Michael J. Messerly, Paul H. Pax, Alexander M. Rubenchik
  • Publication number: 20170229838
    Abstract: An Nd3+ optical fiber laser and amplifier operating in the wavelength range from 1300 to 1450 nm is described. The fiber includes a rare earth doped optical amplifier or laser operating within this wavelength band is based upon an optical fiber that guides light in this wavelength band. The waveguide structure attenuates light in the wavelength range from 850 nm to 950 nm and from 1050 nm to 1150 nm.
    Type: Application
    Filed: October 7, 2016
    Publication date: August 10, 2017
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Jay W. Dawson, Graham S. Allen, Derrek Reginald Drachenberg, Victor V. Khitrov, Michael J. Messerly, Paul H. Pax, Nick Schenkel
  • Publication number: 20170229834
    Abstract: Rare earth doped fiber lasers can be robust and efficient sources of high quality light, but are usually limited to the highest gain transitions of the active species. But rare earths typically possess a multitude of potentially useful transitions that might be accessed if the dominant transition can be suppressed. In fiber lasers this suppression is complicated by the very high net gain the dominant transitions exhibit; effective suppression requires some mechanism distributed along the length of the fiber. We have developed a novel waveguide with resonant leakage elements that frustrate guidance at well-defined and selectable wavelengths. Based on this waveguide, we have fabricated a Large Mode Area Neodymium doped fiber with suppression of the four-level transition around 1060 nm, and demonstrated lasing on the three-level transition at 930 nm with good efficiency.
    Type: Application
    Filed: October 7, 2016
    Publication date: August 10, 2017
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Paul H. Pax, Graham S. Allen, Jay W. Dawson, Derrek Reginald Drachenberg, Victor V. Khitrov, Michael J. Messerly, Nick Schenkel
  • Patent number: 9373928
    Abstract: Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: June 21, 2016
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Arun K. Sridharan, Paul H. Pax, John E. Heebner, Derrek R. Drachenberg, James P. Armstrong, Jay W. Dawson
  • Publication number: 20150340835
    Abstract: Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.
    Type: Application
    Filed: July 10, 2015
    Publication date: November 26, 2015
    Inventors: Arun K. Sridharan, Paul H. Pax, John E. Heebner, Derrek R. Drachenberg, James P. Armstrong, Jay W. Dawson
  • Patent number: 9170367
    Abstract: Field-flattening strands may be added to and arbitrarily positioned within a field-flattening shell to create a waveguide that supports a patterned, flattened mode. Patterning does not alter the effective index or flattened nature of the mode, but does alter the characteristics of other modes. Compared to a telecom fiber, a hexagonal pattern of strands allows for a three-fold increase in the flattened mode's area without reducing the separation between its effective index and that of its bend-coupled mode. Hexagonal strand and shell elements prove to be a reasonable approximation, and, thus, to be of practical benefit vis-à-vis fabrication, to those of circular cross section. Patterned flattened modes offer a new and valuable path to power scaling.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 27, 2015
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Michael J. Messerly, Paul H. Pax, Jay W. Dawson
  • Patent number: 9172208
    Abstract: An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: October 27, 2015
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Jay W. Dawson, Graham S. Allen, Paul H. Pax, John E. Heebner, Arun K. Sridharan, Alexander M. Rubenchik, Chrisopher B. J. Barty
  • Patent number: 9166355
    Abstract: A robust, compact optical pulse train source is described, with the capability of generating sub-picosecond micro-pulse sequences, which can be periodic as well as non-periodic, and at repetition rates tunable over decades of baseline frequencies, from MHz to multi-GHz regimes. The micro-pulses can be precisely controlled and formatted to be in the range of many ps in duration to as short as several fs in duration. The system output can be comprised of a continuous wave train of optical micro-pulses or can be programmed to provide gated bursts of macro-pulses, with each macro-pulse consisting of a specific number of micro-pulses or a single pulse picked from the higher frequency train at a repetition rate lower than the baseline frequency. These pulses could then be amplified in energy anywhere from the nJ to MJ range.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: October 20, 2015
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Michael J. Messerly, Jay W. Dawson, Christopher P. J. Barty, David J. Gibson, Matthew A. Prantil, Eric Cormier
  • Patent number: 9124066
    Abstract: Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: September 1, 2015
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Arun K. Sridharan, Paul H. Pax, John E. Heebner, Derrek R. Drachenberg, James P. Armstrong, Jay W. Dawson
  • Publication number: 20140300951
    Abstract: A robust, compact optical pulse train source is described, with the capability of generating sub-picosecond micro-pulse sequences, which can be periodic as well as non-periodic, and at repetition rates tunable over decades of baseline frequencies, from MHz to multi-GHz regimes. The micro-pulses can be precisely controlled and formatted to be in the range of many ps in duration to as short as several fs in duration. The system output can be comprised of a continuous wave train of optical micro-pulses or can be programmed to provide gated bursts of macro-pulses, with each macro-pulse consisting of a specific number of micro-pulses or a single pulse picked from the higher frequency train at a repetition rate lower than the baseline frequency. These pulses could then be amplified in energy anywhere from the nJ to MJ range.
    Type: Application
    Filed: September 12, 2012
    Publication date: October 9, 2014
    Inventors: Michael J. Messerly, Jay W. Dawson, Christopher P.J. Barty, David J. Gibson, Matthew A. Prantil, Eric Cormier
  • Patent number: 8731010
    Abstract: Architectures for coherently combining an array of fiber-based lasers are provided. By matching their lengths to within a few integer multiples of a wavelength, the spatial and temporal properties of a single large laser are replicated, while extending the average or peak pulsed power limit.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: May 20, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Michael J. Messerly, Jay W. Dawson, Raymond J. Beach
  • Publication number: 20130294468
    Abstract: Spatial mode conversion modules are described, with the capability of efficiently transforming a given optical beam profile, at one plane in space into another well-defined optical beam profile at a different plane in space, whose detailed spatial features and symmetry properties can, in general, differ significantly. The modules are comprised of passive, high-efficiency, low-loss diffractive optical elements, combined with Fourier transform optics. Design rules are described that employ phase retrieval techniques and associated algorithms to determine the necessary profiles of the diffractive optical components. System augmentations are described that utilize real-time adaptive optical techniques for enhanced performance as well as power scaling.
    Type: Application
    Filed: March 8, 2013
    Publication date: November 7, 2013
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Arun K. Sridharan, Paul H. Pax, John E. Heebner, Derrek R. Drachenberg, James P. Armstrong, Jay W. Dawson
  • Patent number: 8335420
    Abstract: Single, or near single transverse mode waveguide definition is produced using a single homogeneous medium to transport both the pump excitation light and generated laser light. By properly configuring the pump deposition and resulting thermal power generation in the waveguide device, a thermal focusing power is established that supports perturbation-stable guided wave propagation of an appropriately configured single or near single transverse mode laser beam and/or laser pulse.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: December 18, 2012
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Raymond J. Beach, Jay W. Dawson, Michael J. Messerly, Christopher P. J. Barty
  • Publication number: 20120287951
    Abstract: Single, or near single transverse mode waveguide definition is produced using a single homogeneous medium to transport both the pump excitation light and generated laser light. By properly configuring the pump deposition and resulting thermal power generation in the waveguide device, a thermal focusing power is established that supports perturbation-stable guided wave propagation of an appropriately configured single or near single transverse mode laser beam and/or laser pulse.
    Type: Application
    Filed: May 30, 2007
    Publication date: November 15, 2012
    Inventors: Raymond J. Beach, Jay W. Dawson, Michael J. Messerly, Christopher P.J. Barty
  • Publication number: 20110274134
    Abstract: A micro-thruster for controlling the positioning of a satellite includes a solar concentrator for collecting solar energy and producing concentrated solar energy. A solar panel is positioned to receive the concentrated solar energy and thereby produces electrical energy which in turn energizes a diode-pumped fiber optic laser. The energized laser thus produces laser light which is transmitted to ejector material affixed to a satellite.
    Type: Application
    Filed: April 12, 2011
    Publication date: November 10, 2011
    Inventors: Alexander Rubenchik, Raymond J. Beach, Jay W. Dawson, Craig W. Siders
  • Publication number: 20110243164
    Abstract: Architectures for coherently combining an array of fiber-based lasers are provided. By matching their lengths to within a few integer multiples of a wavelength, the spatial and temporal properties of a single large laser are replicated, while extending the average or peak pulsed power limit.
    Type: Application
    Filed: March 28, 2011
    Publication date: October 6, 2011
    Inventors: Michael J. Messerly, Jay W. Dawson, Raymond J. Beach
  • Patent number: 7916762
    Abstract: Architectures for coherently combining an array of fiber-based lasers are provided. By matching their lengths to within a few integer multiples of a wavelength, the spatial and temporal properties of a single large laser are replicated, while extending the average or peak pulsed power limit.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: March 29, 2011
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Michael J Messerly, Jay W Dawson, Raymond J Beach