Patents by Inventor Jaydeb Goswami

Jaydeb Goswami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140117302
    Abstract: A phase change memory cell includes a pair of electrodes having phase change material and heater material there-between. An electrically conductive thermal barrier material is between one of the electrodes and the heater material. Methods are disclosed.
    Type: Application
    Filed: November 1, 2012
    Publication date: May 1, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Jaydeb Goswami
  • Patent number: 8698173
    Abstract: Solid state lighting devices with semi-polar or non-polar surfaces and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state lighting device includes a substrate material having a substrate surface and an epitaxial silicon structure in direct contact with the substrate surface. The epitaxial silicon structure has a sidewall extending away from the substrate surface. The solid state lighting device also includes a semiconductor material on at least a portion of the sidewall of the epitaxial silicon structure. The semiconductor material has a semiconductor surface that is spaced apart from the substrate surface and is located on a semi-polar or non-polar crystal plane of the semiconductor material.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: April 15, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Jaydeb Goswami
  • Publication number: 20140048943
    Abstract: Some embodiments include methods of forming conductive structures. An electrically conductive material may be deposited with a first deposition method. The first deposition method has a first deposition rate and forms a first portion of a conductive structure. A second portion of the conductive structure may be formed by depositing the electrically conductive material with a second deposition method having a second deposition rate. The second deposition rate may be different from the first deposition rate by at least about a factor of 3. In some embodiments, a region of the conductive structure is utilized as a transistor gate of a DRAM cell. Some embodiments include semiconductor constructions.
    Type: Application
    Filed: October 25, 2013
    Publication date: February 20, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Jaydeb Goswami, Hung Ming Tsai, Duane M. Goodner
  • Publication number: 20140010018
    Abstract: Methods, devices, and systems associated with charge storage structures in semiconductor devices are described herein. In one or more embodiments, a method of forming nanodots includes forming at least a portion of a charge storage structure over a material by reacting a single-source precursor and a reactant, where the single-source precursor includes a metal and a semiconductor.
    Type: Application
    Filed: September 9, 2013
    Publication date: January 9, 2014
    Applicant: Micron Technology, Inc.
    Inventor: Jaydeb Goswami
  • Patent number: 8592985
    Abstract: Some embodiments include methods of forming conductive structures. An electrically conductive material may be deposited with a first deposition method. The first deposition method has a first deposition rate and forms a first portion of a conductive structure. A second portion of the conductive structure may be formed by depositing the electrically conductive material with a second deposition method having a second deposition rate. The second deposition rate may be different from the first deposition rate by at least about a factor of 3. In some embodiments, a region of the conductive structure is utilized as a transistor gate of a DRAM cell. Some embodiments include semiconductor constructions.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: November 26, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Jaydeb Goswami, Hung Ming Tsai, Duane M. Goodner
  • Publication number: 20130295760
    Abstract: Methods of incorporating impurities into materials can be useful in non-volatile memory devices as well as other integrated circuit devices. Various embodiments provide for incorporating impurities into a material using a mask.
    Type: Application
    Filed: July 8, 2013
    Publication date: November 7, 2013
    Inventor: Jaydeb GOSWAMI
  • Publication number: 20130264713
    Abstract: Some embodiments include methods of forming conductive structures. An electrically conductive material may be deposited with a first deposition method. The first deposition method has a first deposition rate and forms a first portion of a conductive structure. A second portion of the conductive structure may be formed by depositing the electrically conductive material with a second deposition method having a second deposition rate. The second deposition rate may be different from the first deposition rate by at least about a factor of 3. In some embodiments, a region of the conductive structure is utilized as a transistor gate of a DRAM cell. Some embodiments include semiconductor constructions.
    Type: Application
    Filed: April 10, 2012
    Publication date: October 10, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Jaydeb Goswami, Hung Ming Tsai, Duane M. Goodner
  • Patent number: 8530305
    Abstract: Methods, devices, and systems associated with charge storage structures in semiconductor devices are described herein. In one or more embodiments, a method of forming nanodots includes forming at least a portion of a charge storage structure over a material by reacting a single-source precursor and a reactant, where the single-source precursor includes a metal and a semiconductor.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: September 10, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Jaydeb Goswami
  • Patent number: 8481414
    Abstract: Methods of incorporating impurities into materials can be useful in non-volatile memory devices as well as other integrated circuit devices. Various embodiments provide for incorporating impurities into a material using a discontinuous mask.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: July 9, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Jaydeb Goswami
  • Patent number: 8431923
    Abstract: Methods of forming diode structures for use in memory cells and memory arrays, such as resistive random access memory (RRAM). The methods include forming a first electrode by chemisorbing a graphite material (e.g., graphene) on a conductive material. A low-k dielectric material may be formed over surfaces of the first electrode exposed through an opening in a dielectric material overlying the first electrode, followed by formation of a high-k dielectric material over the low-k dielectric material. A remaining portion of the opening may be filled with another conductive material to form a second electrode. The first and second electrodes of the resulting diode structure have different work functions and, thus, provide a low thermal budget, a low contact resistance, a high forward-bias current and a low reverse-bias current. A memory cell and a memory array including such a diode structure are also disclosed.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: April 30, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Jaydeb Goswami
  • Patent number: 8372671
    Abstract: Solid state lighting devices with semi-polar or non-polar surfaces and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state lighting device includes a substrate material having a substrate surface and an epitaxial silicon structure in direct contact with the substrate surface. The epitaxial silicon structure has a sidewall extending away from the substrate surface. The solid state lighting device also includes a semiconductor material on at least a portion of the sidewall of the epitaxial silicon structure. The semiconductor material has a semiconductor surface that is spaced apart from the substrate surface and is located on a semi-polar or non-polar crystal plane of the semiconductor material.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: February 12, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Jaydeb Goswami
  • Publication number: 20120256269
    Abstract: Semiconductor devices including dual gate structures and methods of forming such semiconductor devices are disclosed. For example, semiconductor devices are disclosed that include a first gate stack that may include a first conductive gate structure formed from a first material, and a second gate stack that may include a dielectric structure formed from an oxide of the first material. For another example, methods including forming a high-K dielectric material layer over a semiconductor substrate, forming a first conductive material layer over the high-K dielectric material layer, oxidizing a portion of the first conductive material layer to convert the portion of the first conductive material layer to a dielectric material layer, and forming a second conductive material layer over both the conductive material layer and the dielectric material layer are also disclosed.
    Type: Application
    Filed: June 15, 2012
    Publication date: October 11, 2012
    Applicant: Micron Technology, Inc.
    Inventor: Jaydeb Goswami
  • Publication number: 20120258585
    Abstract: Methods of incorporating impurities into materials can be useful in non-volatile memory devices as well as other integrated circuit devices. Various embodiments provide for incorporating impurities into a material using a discontinuous mask.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 11, 2012
    Inventor: Jaydeb Goswami
  • Publication number: 20120199807
    Abstract: Methods of forming diode structures for use in memory cells and memory arrays, such as resistive random access memory (RRAM). The methods include forming a first electrode by chemisorbing a graphite material (e.g., graphene) on a conductive material. A low-k dielectric material may be formed over surfaces of the first electrode exposed through an opening in a dielectric material overlying the first electrode, followed by formation of a high-k dielectric material over the low-k dielectric material. A remaining portion of the opening may be filled with another conductive material to form a second electrode. The first and second electrodes of the resulting diode structure have different work functions and, thus, provide a low thermal budget, a low contact resistance, a high forward-bias current and a low reverse-bias current. A memory cell and a memory array including such a diode structure are also disclosed.
    Type: Application
    Filed: February 7, 2011
    Publication date: August 9, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Jaydeb Goswami
  • Patent number: 8207582
    Abstract: Semiconductor devices including dual gate structures and methods of forming such semiconductor devices are disclosed. For example, semiconductor devices are disclosed that include a first gate stack that may include a first conductive gate structure formed from a first material, and a second gate stack that may include a dielectric structure formed from an oxide of the first material. For another example, methods including forming a high-K dielectric material layer over a semiconductor substrate, forming a first conductive material layer over the high-K dielectric material layer, oxidizing a portion of the first conductive material layer to convert the portion of the first conductive material layer to a dielectric material layer, and forming a second conductive material layer over both the conductive material layer and the dielectric material layer are also disclosed.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: June 26, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Jaydeb Goswami
  • Publication number: 20110309324
    Abstract: Solid state lighting devices with semi-polar or non-polar surfaces and associated methods of manufacturing are disclosed herein. In one embodiment, a solid state lighting device includes a substrate material having a substrate surface and an epitaxial silicon structure in direct contact with the substrate surface. The epitaxial silicon structure has a sidewall extending away from the substrate surface. The solid state lighting device also includes a semiconductor material on at least a portion of the sidewall of the epitaxial silicon structure. The semiconductor material has a semiconductor surface that is spaced apart from the substrate surface and is located on a semi-polar or non-polar crystal plane of the semiconductor material.
    Type: Application
    Filed: June 21, 2010
    Publication date: December 22, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Jaydeb Goswami
  • Publication number: 20110254072
    Abstract: Methods, devices, and systems associated with charge storage structures in semiconductor devices are described herein. In one or more embodiments, a method of forming nanodots includes forming at least a portion of a charge storage structure over a material by reacting a single-source precursor and a reactant, where the single-source precursor includes a metal and a semiconductor.
    Type: Application
    Filed: April 19, 2010
    Publication date: October 20, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Jaydeb Goswami
  • Publication number: 20110216585
    Abstract: Metal containing materials and methods of forming the same are disclosed. One such method includes substantially concurrently feeding a flow of precursor gas containing a metal of a metal containing material and a flow of source gas containing a reducing agent so that the precursor gas and the source gas react to form a thickness of the metal containing material. The flow of precursor gas is discontinued, and while the flow of precursor gas is discontinued, the flow of source gas continues to be fed to contact the thickness of the metal containing material.
    Type: Application
    Filed: March 4, 2010
    Publication date: September 8, 2011
    Inventor: Jaydeb Goswami
  • Publication number: 20110095427
    Abstract: Devices and methods for providing low-resistance interconnects in a semiconductor device are provided. Specifically, one or more embodiments of the present invention relate to disposing a conductive material in a trench without disposing a resistive barrier material between the conductive material and the sidewalls of the trench so that the conductive material takes up the full width of the trench. For example, the trench may be disposed over one or more contacts made of a barrier material such as titanium nitride that also acts as a seed, and the conductive material may be grown on top of the titanium nitride to fill the trench.
    Type: Application
    Filed: December 29, 2010
    Publication date: April 28, 2011
    Applicant: Micron Technology, Inc.
    Inventors: Jaydeb Goswami, Allen McTeer
  • Patent number: 7863176
    Abstract: Devices and methods for providing low-resistance interconnects in a semiconductor device are provided. Specifically, one or more embodiments of the present invention relate to disposing a conductive material in a trench without disposing a resistive barrier material between the conductive material and the sidewalls of the trench so that the conductive material takes up the full width of the trench. For example, the trench may be disposed over one or more contacts made of a barrier material such as titanium nitride that also acts as a seed, and the conductive material may be grown on top of the titanium nitride to fill the trench.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: January 4, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Jaydeb Goswami, Allen McTeer