Patents by Inventor Jean-Pierre Dueri

Jean-Pierre Dueri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10299917
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: May 28, 2019
    Assignee: Twelve, Inc.
    Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
  • Publication number: 20190152651
    Abstract: The invention provides a two-part package and method of use for a pre-attached medical implant and delivery tool system. The package includes a wet compartment and a dry compartment and allows a pre-attached implant and delivery tool system to be at least partially stored immersed in a fluid in the wet compartment and at least partially stored in the dry compartment. In one embodiment the implant comprises a replacement heart valve, and the heart valve is stored inside the wet compartment while the heart valve delivery tool remains dry in the dry compartment.
    Type: Application
    Filed: January 25, 2019
    Publication date: May 23, 2019
    Applicant: BOSTON SCIENTIFIC SCIMED INC.
    Inventors: Amr Salahieh, Tom Saul, Robert Geshlider, Andrea Johnson, Dwight Morejohn, Daniel Hildebrand, Jean-Pierre Dueri
  • Patent number: 10206774
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a delivery catheter having a diameter of 21 french or less; an expandable anchor disposed within the delivery catheter; and a replacement valve disposed within the delivery catheter. The invention also includes a method for endovascularly replacing a heart valve of a patient. In some embodiments the method includes the steps of: inserting a catheter having a diameter no more than 21 french into the patient; endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve through the catheter; and deploying the anchor and the replacement valve.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: February 19, 2019
    Assignee: BOSTON SCIENTIFIC SCIMED INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider, Jeff A. Krolik
  • Patent number: 10188832
    Abstract: Steerable medical delivery devices that have a steerable portion and an external controller. The steerable portion has a first tubular member comprising a flexible polymeric tubular member that comprises a wall of solid material along the steerable portion, the first tubular member configured to preferentially bend, and a second tubular member, wherein one of the first and second tubular members is disposed within the other, wherein the first and second tubular members are permanently axially fixed relative to one another at a fixation location distal to the steerable portion.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: January 29, 2019
    Assignee: Shifamed Holdings, LLC
    Inventors: Amr Salahieh, Jonah Lepak, Emma Lepak, Tom Saul, Jean-Pierre Dueri, Brice Arnault De La Menardiere, Clayton Baldwin
  • Publication number: 20180311037
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having a first portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a valve support coupled to a second portion of the anchoring member, configured to support a prosthetic valve and having a cross-sectional shape. In some embodiments, the first portion of the anchoring member is mechanically isolated from the valve support such that the cross-sectional shape of the valve support remains sufficiently stable that the prosthetic valve remains competent when the anchoring member is deformed in the non-circular shape.
    Type: Application
    Filed: May 7, 2018
    Publication date: November 1, 2018
    Inventors: John Morriss, Hanson Gifford, James I. Fann, Jean-Pierre Dueri, Matt McLean, Darin Gittings, Michael Luna, Mark Deem, Douglas Sutton, Jeffry J. Grainger
  • Publication number: 20180206991
    Abstract: The invention includes methods of and apparatus for endovascularly replacing a heart valve of a patient. One aspect of the invention provides a method including the steps of endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve in an unexpanded configuration; and applying an external non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to change the shape of the anchor, such as by applying proximally and/or distally directed force on the anchor using a releasable deployment tool to expand and contract the anchor or parts of the anchor. Another aspect of the invention provides an apparatus including a replacement valve; an anchor; and a deployment tool comprising a plurality of anchor actuation elements adapted to apply a non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to reshape the anchor.
    Type: Application
    Filed: March 21, 2018
    Publication date: July 26, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Jean-Pierre Dueri, Hans F. Valencia, Brian D. Brandt, Dwight P. Morejohn, Claudio Argento, Tom Saul, Ulrich R. Haug
  • Patent number: 10016271
    Abstract: A prosthetic heart valve (100) includes a flexible anchoring member (110) at least partially surrounding and coupled to an inner valve support (120). The device can further include a prosthetic valve (130) coupled to, mounted within, or otherwise carried by the valve support. The valve support includes a plurality of posts (122) connected circumferentially by a plurality of struts (124), where the posts extend along an axial direction generally parallel to the longitudinal axis (101) and the struts extend circumferentially around and transverse to the longitudinal axis. The posts extend an entire longitudinal height HI of the valve support 120. The device also includes one or more sealing members (140) and tissue engaging elements (170) like spikes.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: July 10, 2018
    Assignee: Twelve, Inc.
    Inventors: John Morriss, Hanson Gifford, III, James I. Fann, Jean-Pierre Dueri, Matt McLean, Darin Gittings, Michael Luna, Mark Deem, Douglas Sutton, Jeffry J. Grainger
  • Publication number: 20180116792
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a replacement valve adapted to be delivered endovascularly to a vicinity of the heart valve; an expandable anchor adapted to be delivered endovascularly to the vicinity of the heart valve; and a lock mechanism configured to maintain a minimum amount of anchor expansion. The invention also includes a method for endovascularly replacing a patient's heart valve. In some embodiments the method includes the steps of: endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve; expanding the anchor to a deployed configuration; and locking the anchor in the deployed configuration.
    Type: Application
    Filed: December 14, 2017
    Publication date: May 3, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider
  • Publication number: 20180116793
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a replacement valve adapted to be delivered endovascularly to a vicinity of the heart valve; an expandable anchor adapted to be delivered endovascularly to the vicinity of the heart valve; and a lock mechanism configured to maintain a minimum amount of anchor expansion. The invention also includes a method for endovascularly replacing a patient's heart valve. In some embodiments the method includes the steps of: endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve; expanding the anchor to a deployed configuration; and locking the anchor in the deployed configuration.
    Type: Application
    Filed: December 14, 2017
    Publication date: May 3, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider
  • Patent number: 9956075
    Abstract: The invention includes methods of and apparatus for endovascularly replacing a heart valve of a patient. One aspect of the invention provides a method including the steps of endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve in an unexpanded configuration; and applying an external non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to change the shape of the anchor, such as by applying proximally and/or distally directed force on the anchor using a releasable deployment tool to expand and contract the anchor or parts of the anchor. Another aspect of the invention provides an apparatus including a replacement valve; an anchor; and a deployment tool comprising a plurality of anchor actuation elements adapted to apply a non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to reshape the anchor.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: May 1, 2018
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Amr Salahieh, Jean-Pierre Dueri, Hans F. Valencia, Brian D. Brandt, Dwight P. Morejohn, Claudio Argento, Tom Saul, Ulrich R. Haug
  • Publication number: 20180110616
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a replacement valve adapted to be delivered endovascularly to a vicinity of the heart valve; an expandable anchor adapted to be delivered endovascularly to the vicinity of the heart valve; and a lock mechanism configured to maintain a minimum amount of anchor expansion. The invention also includes a method for endovascularly replacing a patient's heart valve. In some embodiments the method includes the steps of: endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve; expanding the anchor to a deployed configuration; and locking the anchor in the deployed configuration.
    Type: Application
    Filed: December 14, 2017
    Publication date: April 26, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider
  • Publication number: 20180104056
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a delivery catheter having a diameter of 21 french or less; an expandable anchor disposed within the delivery catheter; and a replacement valve disposed within the delivery catheter. The invention also includes a method for endovascularly replacing a heart valve of a patient. In some embodiments the method includes the steps of: inserting a catheter having a diameter no more than 21 french into the patient; endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve through the catheter; and deploying the anchor and the replacement valve.
    Type: Application
    Filed: December 14, 2017
    Publication date: April 19, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider, Jeff A. Krolik
  • Publication number: 20180104052
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a replacement valve adapted to be delivered endovascularly to a vicinity of the heart valve; an expandable anchor adapted to be delivered endovascularly to the vicinity of the heart valve; and a lock mechanism configured to maintain a minimum amount of anchor expansion. The invention also includes a method for endovascularly replacing a patient's heart valve. In some embodiments the method includes the steps of: endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve; expanding the anchor to a deployed configuration; and locking the anchor in the deployed configuration.
    Type: Application
    Filed: December 14, 2017
    Publication date: April 19, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider
  • Publication number: 20180104051
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a replacement valve adapted to be delivered endovascularly to a vicinity of the heart valve; an expandable anchor adapted to be delivered endovascularly to the vicinity of the heart valve; and a lock mechanism configured to maintain a minimum amount of anchor expansion. The invention also includes a method for endovascularly replacing a patient's heart valve. In some embodiments the method includes the steps of: endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve; expanding the anchor to a deployed configuration; and locking the anchor in the deployed configuration.
    Type: Application
    Filed: December 14, 2017
    Publication date: April 19, 2018
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider
  • Patent number: 9901443
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having a first portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a valve support coupled to a second portion of the anchoring member, configured to support a prosthetic valve and having a cross-sectional shape. In some embodiments, the first portion of the anchoring member is mechanically isolated from the valve support such that the cross-sectional shape of the valve support remains sufficiently stable that the prosthetic valve remains competent when the anchoring member is deformed in the non-circular shape.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: February 27, 2018
    Assignee: Twelve, Inc.
    Inventors: John Morriss, Hanson Gifford, III, James I. Fann, Jean-Pierre Dueri, Matt McLean, Darin Gittings, Michael Luna, Mark Deem, Douglas Sutton, Jeffry J. Grainger
  • Publication number: 20180014931
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include a valve support having an upstream end and a downstream end extending around a longitudinal axis and having a cross-sectional shape. The valve support can have an outer surface and an inner surface, wherein the inner surface is configured to support a prosthetic valve. The device can also include an expandable retainer coupled to the upstream end of the valve support. The retainer can be configured to engage tissue on or near the annulus. In some embodiments, the valve support is mechanically isolated from the retainer such that the cross-sectional shape of the valve support remains sufficiently stable when the retainer is deformed in a non-circular shape by engagement with the tissue.
    Type: Application
    Filed: August 21, 2017
    Publication date: January 18, 2018
    Inventors: John Morriss, Hanson Gifford, III, James L. Fann, Jean-Pierre Dueri, Darrin Gittings, Michael Luna, Mark Deem, Douglas Sutton
  • Publication number: 20170340438
    Abstract: Apparatus for endovascularly replacing a patient's heart valve, including: a replacement valve adapted to be delivered endovascularly to a vicinity of the heart valve; an expandable anchor adapted to be delivered endovascularly to the vicinity of the heart valve; and a lock mechanism configured to maintain a minimum amount of anchor expansion. The invention also includes a method for endovascularly replacing a patient's heart valve. In some embodiments the method includes the steps of: endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve; expanding the anchor to a deployed configuration; and locking the anchor in the deployed configuration.
    Type: Application
    Filed: August 14, 2017
    Publication date: November 30, 2017
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider
  • Publication number: 20170265996
    Abstract: A method for percutaneously replacing a heart valve of a patient. In some embodiments the method includes the steps of percutaneously delivering a replacement valve and an expandable anchor to a vicinity of the heart valve in an unexpanded configuration; expanding the anchor to a deployed configuration in which the anchor contacts tissue at a first anchor site; repositioning the anchor to a second anchor site; and deploying the anchor at the second anchor site.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 21, 2017
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider, Jeff A. Krolik
  • Patent number: 9763780
    Abstract: A prosthetic heart valve device (100) for percutaneous replacement of a native heart valve includes an expandable retainer (110) at least partially surrounding and coupled to an inner valve support (120). The device can further include a prosthetic valve (130) coupled to the valve support. The retainer forms a donut-shaped flange (190) having an arcuate outer surface (142) for engaging tissue and an inner lumen defining a passage for blood to flow through the valve support. The retainer can include a plurality of circumferentially positioned, resiliency deformable and flexible ribs (114) which are coupled at their downstream ends 116 to the valve support 120. The flexible ribs, in one embodiment, can have a general C-shape configuration with the tips (117) of the flexible ribs and an opening (119) of the C-shape configuration oriented toward a longitudinal axis (101) of the device.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: September 19, 2017
    Assignee: Twelve, Inc.
    Inventors: John Morriss, Hanson Gifford, III, James I. Fann, Jean-Pierre Dueri, Darin Gittings, Michael Luna, Mark Deem, Douglas Sutton
  • Publication number: 20170203077
    Abstract: Steerable medical devices and methods of use. In some embodiments, the steerable medical devices can be steered bi-directionally. In some embodiments the steerable medical devices include a first flexible tubular member and a second flexible tubular member secured together at a location distal to a steerable portion of the steerable medical device.
    Type: Application
    Filed: December 9, 2016
    Publication date: July 20, 2017
    Inventors: Amr Salahieh, Jonah Lepak, Emma Lepak, Tom Saul, Jean-Pierre Dueri, Joseph Creagan Trautman, Christopher T. Cheng, Richard Joseph Renati, Colin Mixter, Marc Bitoun