Patents by Inventor Jean W. Beeckman

Jean W. Beeckman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160199814
    Abstract: A method of producing a hydrogenation catalyst, for example, a phthalate hydrogenation catalyst, comprising contacting a silica support having a medium pore size of at least about 10 nm with an acid to produce a treated silica support, and depositing a noble metal, preferably ruthenium, on the treated silica support to produce a noble metal-containing silica support, and optionally contacting the noble metal-containing silica support with a chelating agent to form the hydrogenation catalyst; a hydrogenation catalyst prepared by that method; and a method of hydrogenating unsaturated hydrocarbons, such as, phthalates, in which an unsaturated hydrocarbon is contacted with hydrogen gas in the presence of the hydrogenation catalyst of the invention.
    Type: Application
    Filed: September 2, 2014
    Publication date: July 14, 2016
    Inventors: Chuansheng Bai, Jean W. Beeckman, Hans K.T. Goris, Adrienne J. Thornburg, Natalie A. Fassbender, Sabato Miseo, Stuart L. Soled
  • Publication number: 20160193591
    Abstract: A method of preparing a hydrogenation catalyst, for example, a phthalate hydrogenation catalyst, comprising nebulizing a liquid containing a noble metal and a chelating agent comprising at least one nitrogen-containing functional group to form a nebulized liquid, and contacting the nebulized liquid with silica particles; a hydrogenation catalyst prepared by that method; and a method of hydrogenating unsaturated hydrocarbons, such as phthalates, in which an unsaturated hydrocarbon is contacted with hydrogen gas in the presence of the hydrogenation catalyst of the invention.
    Type: Application
    Filed: September 2, 2014
    Publication date: July 7, 2016
    Inventors: Chuansheng Bai, Jean W. Beeckman, Adrienne J Thomburg, Natalie A. Fassbender, Theodore E. Datz
  • Publication number: 20160193592
    Abstract: A method of preparing a hydrogenation catalyst, for example, a phthalate hydrogenation catalyst, comprising contacting a silica support having a median pore size of at least about 10 nm with a silylating agent to form an at least partially coated silica support, calcining said coated silica support to form a treated silica support, and depositing a noble metal, preferably ruthenium, on the treated silica support, and optionally contacting the treated silica support with an optional chelating agent to form the hydrogenation catalyst; a hydrogenation catalyst prepared by that method; and a method of hydrogenating unsaturated hydrocarbons, such as phthalates, in which an unsaturated hydrocarbon is contacted with hydrogen gas in the presence of the hydrogenation catalyst of the invention.
    Type: Application
    Filed: September 2, 2014
    Publication date: July 7, 2016
    Inventors: Chuansheng Bai, Jean W. Beeckman, Adrienne J. Thornburg, Natalie A. Fassbender, Sabato Miseo, Stuart L. Soled
  • Publication number: 20160167013
    Abstract: A composition is described comprising a molecular sieve having pores defined by channels formed by one or more 8-membered rings of tetrahedrally coordinated atoms, such as a DDR-type molecular sieve, and an amorphous deposit of a boron compound on the molecular sieve.
    Type: Application
    Filed: November 19, 2015
    Publication date: June 16, 2016
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Jean W. Beeckman, Ivy D. Johnson, Natalie A. Fassbender, Tilman W. Beutel, Nadya A. Hrycenko, Randolph J. Smiley, Peter I. Ravikovitch
  • Patent number: 9174206
    Abstract: Bulk catalysts that include a Group VI metal, a Group VIII metal, and at least 10-60% of an organic compound based component are formed. The bulk catalysts have increased stability through the use of a stabilizer in the organic compound based component, the use of an improved gas phase sulfidation, or a combination thereof. The bulk catalysts are suitable for hydroprocessing of hydrocarbon feeds.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: November 3, 2015
    Assignee: EXXONMOBILE RESEARCH AND ENGINEERING COMPANY
    Inventors: Jean W. Beeckman, Stephen J. McCarthy, Chuansheng Bai, William G. Borghard, Sanket K. Desai, Hyung S. Woo
  • Publication number: 20150182947
    Abstract: Methods are provided for synthesizing ZSM-58 crystals with an improved morphology and/or an improved size distribution. By controlling the conditions during synthesis of the ZSM-58 crystals, crystals of a useful size with a narrow size distribution can be generated. Additionally, by controlling the ratio of water content to silica content in the synthesis mixture, it has unexpectedly been found that ZSM-58 crystals can be formed with an improved morphology. The improved morphology can result in ZSM-58 crystals with a more uniform size across the various dimensions of the crystal, which allows for more uniform diffusion within the crystal. This is in contrast to conventionally synthesized crystals, where the size of the crystal can vary along different axes of the crystals.
    Type: Application
    Filed: December 17, 2014
    Publication date: July 2, 2015
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ivy D. Johnson, Tilman W. Beutel, Peter I. Ravikovitch, Harry W. Deckman, Jack W. Johnson, Jean W. Beeckman, Natalie A. Fassbender, Nadya A. Hrycenko, Randy J. Smiley
  • Publication number: 20150158786
    Abstract: The invention relates to an olefin oligomerization process comprising the steps of: i) contacting a feed comprising olefins and nitriles with a guard bed comprising eta alumina; and ii) contacting the feed obtained in step i) with an oligomerization catalyst under conditions suitable to oligomerize the olefins in the feed. It also relates to the use of a guard bed comprising eta-alumina for reducing the content of basic organic compounds in a hydrocarbon feed.
    Type: Application
    Filed: June 14, 2012
    Publication date: June 11, 2015
    Inventors: Machteld M. W. Mertens, Geraldine Tosin, Jean W. Beeckman, Hans K. T. Goris, George M. K. Mathys
  • Patent number: 8932455
    Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride containing catalyst comprising a surface, and a Group VI/Group VIII metal sulfide coated onto the surface of the interstitial metal hydride. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: January 13, 2015
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Chuansheng Bai, Adrienne J. Thornburg, Heather A. Elsen, Jean W. Beeckman, William G. Borghard
  • Publication number: 20140081060
    Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride containing catalyst comprising a surface, and a Group VI/Group VIII metal sulfide coated onto the surface of the interstitial metal hydride. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
    Type: Application
    Filed: November 5, 2013
    Publication date: March 20, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Chuansheng BAI, Adrienne J. THORNBURG, Heather A. ELSEN, Jean W. BEECKMAN, William G. BORGHARD
  • Patent number: 8598067
    Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride containing catalyst comprising a surface, and a Group VI/Group VIII metal sulfide coated onto the surface of the interstitial metal hydride. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: December 3, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Chuansheng Bai, Adrienne J. Thornburg, Heather A. Elsen, Jean W. Beeckman, William G. Borghard
  • Patent number: 8546286
    Abstract: In a process for producing a metal containing catalyst composition suitable for effecting hydrocarbon hydrogenation and/or dehydrogenation reactions, a catalyst support comprising a porous crystalline material combined with an amorphous binder is treated with an anchoring material capable of bonding to the surface of the support and to a metal component. In addition, a precursor to the metal component is deposited on the surface of the catalyst support and then the treated catalyst support having the precursor deposited thereon is subjected to conditions effective to convert the precursor to the metal component and to cause the anchoring material to bond to the surface of the support and to the metal component.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: October 1, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stephen J. McCarthy, Jean W. Beeckman
  • Publication number: 20130068663
    Abstract: Process for the preparation of a catalyst suitable for use in a naphtha reforming process, the process including providing a Y zeolite with an initial SiO2:Al2O3 molar ratio of at least 150, introducing the Y zeolite to a binder to form an intermediate composition, extruding the intermediate composition, reducing the alpha acidity of the extruded composition to provide a low acid composition, and introducing a noble metal to the low acid composition. Processes and systems of converting naphtha to a higher-octane hydrocarbon supply using catalysts, as prepared herein, are also disclosed.
    Type: Application
    Filed: September 19, 2011
    Publication date: March 21, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Jean W. BEECKMAN, Stephen J. McCARTHY, Jane C. CHENG
  • Patent number: 8343335
    Abstract: In a method of forming a shaped body, a mixture is formed comprising a particulate silica-rich material, water and a potassium base or basic salt, wherein the total solids content of the mixture is from about 20 to about 90 weight percent. The mixture is extruded into extrudates and the extrudates are dried and heated to a temperature of from about 300° C. to about 800° C. to form the shaped body.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: January 1, 2013
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Jean W. Beeckman, Theodore E. Datz, Glenn R. Sweeten, Jason Wu
  • Patent number: 8207082
    Abstract: This invention relates to a method for making shaped bodies having a silica content of at least 85 wt %, to shaped bodies made by such method, to catalyst compositions comprising shaped bodies made by such methods and to catalytic conversion processes using catalyst compositions comprising shaped bodies made by such methods. The method of making the shaped bodies comprises the steps of a) forming shaped bodies from a mixture obtained from at least one amorphous silica powder, at least one silica sol having a pH below 7, and at least one polymeric organic extrusion aid, optionally supplemental liquid medium and optionally crystallites of a zeolite or zeolite-type material; b) drying the shaped bodies obtained in step a); and c) heating the shaped bodies to a temperature ranging from about 500° C. to about 800° C.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: June 26, 2012
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Jason Wu, Theodore E. Datz, Ralph Dehaas, Jean W. Beeckman
  • Publication number: 20120111767
    Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride containing catalyst comprising a surface, and a Group VI/Group VIII metal sulfide coated onto the surface of the interstitial metal hydride. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
    Type: Application
    Filed: November 9, 2010
    Publication date: May 10, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Chuansheng Bai, Adrienne J. Thornburg, Heather A. Elsen, Jean W. Beeckman, William G. Borghard
  • Patent number: 8048295
    Abstract: A process for reducing the Bromine Index of a hydrocarbon feed containing bromine-reactive contaminants that has improved cycle length and utilizes a crystalline molecular sieve catalyst. The process is carried out by contacting the hydrocarbon feed under conversion conditions with a catalyst shaped in the form of an elongated aggregate comprising a crystalline molecular sieve having a MWW or *BEA framework type. The shortest cross-sectional dimension of the elongated aggregate is less about 1/10 inch (2.54 millimeters).
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: November 1, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen H. Brown, Jose G. Santiesteban, Bryson J. Sundberg, Terry E. Helton, Daria N. Lissy, Jean W. Beeckman, Arthur P. Werner
  • Patent number: 8022261
    Abstract: A catalyst composition comprises a crystalline MCM-22 family molecular sieve and a binder, wherein the catalyst composition is characterized by an extra-molecular sieve porosity greater than or equal to 0.122 ml/g for pores having a pore diameter ranging from about 2 nm to about 8 nm, wherein the porosity is measured by N2 porosimetry. The catalyst composition may be used for the process of alkylation or transalkylation of an alkylatable aromatic compound with an alkylating agent. The molecular sieve may have a Constraint Index of less than 12, e.g., less than 2. Examples of molecular sieve useful for this disclosure are a MCM-22 family molecular sieve, zeolite Y, and zeolite Beta.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: September 20, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Mohan Kalyanaraman, Christine N. Elia, Darryl D. Lacy, Jean W. Beeckman, Michael C. Clark
  • Publication number: 20110139685
    Abstract: In a process for producing a metal containing catalyst composition suitable for effecting hydrocarbon hydrogenation and/or dehydrogenation reactions, a catalyst support comprising a porous crystalline material combined with an amorphous binder is treated with an anchoring material capable of bonding to the surface of the support and to a metal component. In addition, a precursor to the metal component is deposited on the surface of the catalyst support and then the treated catalyst support having the precursor deposited thereon is subjected to conditions effective to convert the precursor to the metal component and to cause the anchoring material to bond to the surface of the support and to the metal component.
    Type: Application
    Filed: December 15, 2009
    Publication date: June 16, 2011
    Inventors: Stephen J. McCarthy, Jean W. Beeckman
  • Patent number: 7919421
    Abstract: A catalyst composition comprises a crystalline MCM-22 family molecular sieve and a binder, wherein the catalyst composition is characterized by an extra-molecular sieve porosity greater than or equal to 0.122 ml/g for pores having a pore diameter ranging from about 2 nm to about 8 nm, wherein the porosity is measured by N2 porosimetry. The catalyst composition may be used for the process of alkylation or transalkylation of an alkylatable aromatic compound with an alkylating agent. The molecular sieve may have a Constraint Index of less than 12, e.g., less than 2. Examples of molecular sieve useful for this disclosure are a MCM-22 family molecular sieve, zeolite Y, and zeolite Beta.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: April 5, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Mohan Kalyanaraman, Christine N. Elia, Darryl D. Lacy, Jean W. Beeckman, Michael C. Clark
  • Patent number: 7902103
    Abstract: The invention relates to the use of particulate silicone resins in the absence of added organic solvents with particulate inorganic materials to form structured bodies and in particular molecular sieve containing structured bodies. The silicone resin is used in the form of a particulate with an average particle size of less than 700 um. Upon calcining, the silicone resin is converted to silica which acts as a binder.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: March 8, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jean W. Beeckman, Glenn R. Sweeten, Arthur W. Chester, John P. McWilliams, Dominick N. Mazzone