Patents by Inventor Jean W. Beeckman

Jean W. Beeckman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110028772
    Abstract: A catalyst composition comprises a crystalline MCM-22 family molecular sieve and a binder, wherein the catalyst composition is characterized by an extra-molecular sieve porosity greater than or equal to 0.122 ml/g for pores having a pore diameter ranging from about 2 nm to about 8 nm, wherein the porosity is measured by N2 porosimetry. The catalyst composition may be used for the process of alkylation or transalkylation of an alkylatable aromatic compound with an alkylating agent. The molecular sieve may have a Constraint Index of less than 12, e.g., less than 2.
    Type: Application
    Filed: October 18, 2010
    Publication date: February 3, 2011
    Inventors: Mohan Kalyanaraman, Christine N. Elia, Darryl D. Lacy, Jean W. Beeckman, Michael C. Clark
  • Publication number: 20100206775
    Abstract: This invention relates to a method for making shaped bodies having a silica content of at least 85 wt %, to shaped bodies made by such method, to catalyst compositions comprising shaped bodies made by such methods and to catalytic conversion processes using catalyst compositions comprising shaped bodies made by such methods. The method of making the shaped bodies comprises the steps of a) forming shaped bodies from a mixture obtained from at least one amorphous silica powder, at least one silica sol having a pH below 7, and at least one polymeric organic extrusion aid, optionally supplemental liquid medium and optionally crystallites of a zeolite or zeolite-type material; b) drying the shaped bodies obtained in step a); and c) heating the shaped bodies to a temperature ranging from about 500° C. to about 800° C.
    Type: Application
    Filed: January 12, 2007
    Publication date: August 19, 2010
    Inventors: Jean W. Beeckman, Jason Wu, Theodore E. Datz, Ralph Dehaas
  • Publication number: 20100093522
    Abstract: Bulk catalysts that include a Group VI metal, a Group VIII metal, and at least 10-60% of an organic compound based component are formed. The bulk catalysts have increased stability through the use of a stabilizer in the organic compound based component, the use of an improved gas phase sulfidation, or a combination thereof. The bulk catalysts are suitable for hydroprocessing of hydrocarbon feeds.
    Type: Application
    Filed: October 5, 2009
    Publication date: April 15, 2010
    Inventors: Jean W. Beeckman, Stephen J. McCarthy, Chuansheng Bai, William G. Borghard, Sanket K. Desai, Hyung S. Woo
  • Patent number: 7686949
    Abstract: An improved hydrotreating process for use with lube oil boiling range feedstreams utilizing a catalyst comprising a hydrogenation-dehydrogenation component selected from the Group VIII noble metals and mixtures thereof, a mesoporous support, and a binder.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: March 30, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stephen J. McCarthy, Jean W. Beeckman, Sylvain S. Hantzer, Geoffrey L. Woolery, Glenn R. Sweeten
  • Patent number: 7682502
    Abstract: An improved hydrogenation process for lube oil boiling range feedstreams utilizing a catalyst comprising at least one Group VIII noble metal selected from Pt, Pd, and mixtures thereof having an average pore diameter of about 15 to less than about 40 ?.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: March 23, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stephen J. McCarthy, Wenylh F. Lai, Jean W. Beeckman, Sylvain S. Hantzer
  • Patent number: 7649123
    Abstract: A process for the oligomerization of propylene is disclosed wherein a tungstated zirconia catalyst prepared as a distillation structure is used in a reaction distillation zone under conditions of temperature and pressure to concurrently react the propylene to produce oligomers thereof and separate the oligomer products from unreacted propylene by fractional distillation in a distillation column reactor. Compared to the prior art tubular or plug flow reactors, lower temperatures and pressures are used to produce higher conversions and selectivities to preferred isomeric forms useful for preparing neo acids.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: January 19, 2010
    Assignees: Catalytic Distillation Technologies, ExxonMobil Chemical Patents Inc.
    Inventors: Michael J. Keenan, Ramzi Y. Saleh, James C. Vartuli, Robert C. Lemon, Jean W. Beeckman, Christopher C. Boyer, Mitchell E. Loescher
  • Publication number: 20090270246
    Abstract: The invention relates to the use of particulate silicone resins in the absence of added organic solvents with particulate inorganic materials to form structured bodies and in particular molecular sieve containing structured bodies. The silicone resin is used in the form of a particulate with an average particle size of less than 700 um. Upon calcining, the silicone resin is converted to silica which acts as a binder.
    Type: Application
    Filed: June 30, 2009
    Publication date: October 29, 2009
    Inventors: Jean W. Beeckman, Glenn R. Sweeten, Arthur W. Chester, John P. McWilliams, Dominick N. Mazzone
  • Publication number: 20090216056
    Abstract: In a method of forming a shaped body, a mixture is formed comprising a particulate silica-rich material, water and a potassium base or basic salt, wherein the total solids content of the mixture is from about 20 to about 90 weight percent. The mixture is extruded into extrudates and the extrudates are dried and heated to a temperature of from about 300° C. to about 800° C. to form the shaped body.
    Type: Application
    Filed: February 21, 2008
    Publication date: August 27, 2009
    Inventors: Jean W. Beeckman, Theodore E. Datz, Glenn R. Sweeten, Jason Wu
  • Patent number: 7572749
    Abstract: The invention relates to the use of particulate silicone resins in the absence of added organic solvents with particulate inorganic materials to form structured bodies and in particular molecular sieve containing structured bodies. The silicone resin is used in the form of a particulate with an average particle size of less than 700 um. Upon calcining, the silicone resin is converted to silica which acts as a binder.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: August 11, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jean W. Beeckman, Glenn R. Sweeten, Arthur W. Chester, John P. McWilliams, Dominick N. Mazzone
  • Publication number: 20090182183
    Abstract: A process for the oligomerization of propylene is disclosed wherein a tungstated zirconia catalyst prepared as a distillation structure is used in a reaction distillation zone under conditions of temperature and pressure to concurrently react the propylene to produce oligomers thereof and separate the oligomer products from unreacted propylene by fractional distillation in a distillation column reactor. Compared to the prior art tubular or plug flow reactors, lower temperatures and pressures are used to produce higher conversions and selectivities to preferred isomeric forms useful for preparing neo acids.
    Type: Application
    Filed: January 15, 2008
    Publication date: July 16, 2009
    Applicants: CATALYTIC DISTILLATION TECHNOLOGIES, EXXONMOBIL CHEMICAL PATENTS, INC.
    Inventors: Michael J. Keenan, Ramzi Y. Saleh, James C. Vartuli, Robert C. Lemon, Jean W. Beeckman, Christopher C. Boyer, Mitchell E. Loescher
  • Patent number: 7553790
    Abstract: The present invention describes a method to increase the activity of a catalyst by first performing an ion exchange step with a potassium ion, followed by performing an ion-exchange step with an ammonium ion. Specifically, the present invention describes a method to increase the acidity of a zeolite by incorporating a potassium salt ion-exchange prior to an ammonium salt ion-exchange step. Even more specifically, the present invention is drawn to a method of increasing the activity of a zeolite by employing more than one potassium ion exchanges followed by at least one ammonium ion exchange. The present invention also describes a method to reduce the amount of sodium normally found in commercially produced zeolite by employing any of these methods. The present invention is also drawn to the catalysts produced by any of these methods.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: June 30, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jean W. Beeckman, Glenn R. Sweeten, Daria N. Lissy, David L. Stern, Stephen J. McCarthy, Dominick N. Mazzone, Christine N. Elia
  • Patent number: 7407909
    Abstract: A method of ex-situ activation and dry passivation of supported noble metal catalysts including the steps of reducing in the presence of hydrogen and dry passivation by cooling in an inert atmosphere and exposing to air or by filling the pores of the catalyst with a low sulfur oil before exposing to air.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: August 5, 2008
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Stephen J. McCarthy, Jean W. Beeckman, William G. Borghard, Sylvain Hantzer
  • Publication number: 20080154080
    Abstract: A catalyst composition comprises a crystalline MCM-22 family molecular sieve and a binder, wherein the catalyst composition is characterized by an extra-molecular sieve porosity greater than or equal to 0.122 ml/g for pores having a pore diameter ranging from about 2 nm to about 8 nm, wherein the porosity is measured by N2 porosimetry. The catalyst composition may be used for the process of alkylation or transalkylation of an alkylatable aromatic compound with an alkylating agent. The molecular sieve may have a Constraint Index of less than 12, e.g., less than 2.
    Type: Application
    Filed: December 21, 2006
    Publication date: June 26, 2008
    Inventors: Mohan Kalyanoraman, Christine N. Elia, Darryl D. Lacy, Jean W. Beeckman, Michael C. Clark
  • Publication number: 20080128329
    Abstract: A process for reducing the Bromine Index of a hydrocarbon feed containing bromine-reactive contaminants that has improved cycle length and utilizes a crystalline molecular sieve catalyst. The process is carried out by contacting the hydrocarbon feed under conversion conditions with a catalyst shaped in the form of an elongated aggregate comprising a crystalline molecular sieve having a MWW or *BEA framework type. The shortest cross-sectional dimension of the elongated aggregate is less about 1/10 inch (2.54 millimeters).
    Type: Application
    Filed: December 5, 2006
    Publication date: June 5, 2008
    Inventors: Stephen H. Brown, Jose G. Santiesteban, Bryson J. Sundberg, Terry E. Helton, Daria N. Lissy, Jean W. Beeckman, Arthur P. Werner
  • Patent number: 7326818
    Abstract: In a process for preparing a selectivated catalyst composition useful in the disproportionation of toluene, a catalyst comprising an acidic molecular sieve is contacted with a boron compound at a temperature in excess of 500° C.; and the resultant catalyst is then contacted with a medium containing hydrogen ions to at least partially restore the acid activity of the molecular sieve.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: February 5, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jean W. Beeckman, William G. Borghard, Arthur W. Chester, Robert A. Crane, Owen C. Feeley, John C. Fried, Dominick N. Mazzone, Glenn R. Sweeten
  • Patent number: 7285512
    Abstract: This invention relates to a catalyst and process for selectively hydrodesulfurizing naphtha feedstreams using a catalyst comprising at least one hydrodesulfurizing metal supported on a low acidity, ordered mesoporous support material.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: October 23, 2007
    Assignee: ExxonMobile Research and Engineering Company
    Inventors: Chuansheng Bai, Gary B. McVicker, Stuart S. Shih, Michael C. Kerby, Edward A. Lemon, Jr., Jean W. Beeckman
  • Publication number: 20020112989
    Abstract: A hydrocarbon hydrogenation process and a catalytic composition having hydrogenation functionality. The catalytic composition includes at least two noble metals supported on an inorganic, porous crystalline phase support material having pores with diameters of at least about 13 Angstrom Units and exhibiting, after calcination, an X-ray diffraction pattern with at least one peak at a d-spacing greater than about 18 Å with a relative intensity of 100, and having a benzene sorption capacity greater than about 15 grams benzene per 100 grams of the support material at 50 torr and 25° C. The noble metals are selected from the group consisting of Pd, Pt, Rh and lr and the crystalline material is a metallosilicate or an aluminosilicate.
    Type: Application
    Filed: August 16, 2001
    Publication date: August 22, 2002
    Inventors: Stuart S. Shih, Yuk-Mui Louie, David A. Pappal, Jean W. Beeckman
  • Patent number: 6310265
    Abstract: This invention relates to a process for isomerizing paraffins comprising the step of contacting a feed containing paraffins with a catalyst comprising a synthetic porous crystalline material, designated MCM-68, which exhibits a distinctive X-ray diffraction pattern and has a unique crystal structure which contains at least one channel system, in which each channel is defined by a 12-membered ring of tetrahedrally coordinated atoms, and at least two further, independent channel systems, in each of which each channel is defined by a 10-membered ring of tetrahedrally coordinated atoms, wherein the number of unique 10-membered ring channels is twice the number of 12-membered ring channels.
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: October 30, 2001
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Arthur W. Chester, David C. Calabro, Sandeep S. Dhingra, Jean W. Beeckman, Timothy J. Fiebig, Glenn R. Sweeten, Terry E. Helton, Charles T. Kresge, Richard F. Socha, Simon C. Weston
  • Patent number: 5585082
    Abstract: An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 650.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and spray dried to form the stabilized spheroidal alumina particles having a particle size of less than 500 microns. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.
    Type: Grant
    Filed: March 24, 1995
    Date of Patent: December 17, 1996
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Michael S. Ziebarth, Michael J. Hager, Jean W. Beeckman, Stanislaw Plecha
  • Patent number: 5427995
    Abstract: An alumina sorbent capable of adsorbing NOx and SOx from waste gases and being regenerated by heating above 650.degree. C. is made by incorporating an alumina stabilizing agent into the sorbent. A preferred method is to add the stabilizer when the alumina is precipitated. The precipitated powder is formed subsequently into a slurry, milled and spray dried to form the stabilized spheroidal alumina particles having a particle size of less than 500 microns. These particles are impregnated with an alkali metal or alkaline earth metal to form the stabilized sorbent. Alumina stabilizers include one or more of silica, lanthana, other rare earths, titania, zirconia and alkaline earths.
    Type: Grant
    Filed: February 24, 1993
    Date of Patent: June 27, 1995
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Michael S. Ziebarth, Michael J. Hager, Jean W. Beeckman, Stanislaw Plecha