Patents by Inventor Jeff Jackson

Jeff Jackson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10932709
    Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: March 2, 2021
    Assignee: DEXCOM, INC.
    Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
  • Publication number: 20200330006
    Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 22, 2020
    Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
  • Publication number: 20200323470
    Abstract: Systems and methods are disclosed which provide for a “factory-calibrated” sensor. In doing so, the systems and methods include predictive prospective modeling of sensor behavior, and also include predictive modeling of physiology. With these two correction factors, a consistent determination of sensitivity can be achieved, thus achieving factory calibration.
    Type: Application
    Filed: June 24, 2020
    Publication date: October 15, 2020
    Inventors: Rui Ma, Naresh C. Bhavaraju, Thomas Stuart Hamilton, Jonathan Hughes, Jeff Jackson, David I-Chun Lee, Peter C. Simpson, Stephen J. Vanslyke
  • Patent number: 10729364
    Abstract: Systems and methods are disclosed which provide for a “factory-calibrated” sensor. In doing so, the systems and methods include predictive prospective modeling of sensor behavior, and also include predictive modeling of physiology. With these two correction factors, a consistent determination of sensitivity can be achieved, thus achieving factory calibration.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: August 4, 2020
    Assignee: DexCom, Inc.
    Inventors: Rui Ma, Naresh C. Bhavaraju, Thomas Stuart Hamilton, Jonathan Hughes, Jeff Jackson, David I-Chun Lee, Peter C. Simpson, Stephen J. Vanslyke
  • Publication number: 20190339221
    Abstract: Systems and methods are provided that address the need to frequently calibrate analyte sensors, according to implementation. In more detail, systems and methods provide a preconnected analyte sensor system that physically combines an analyte sensor to measurement electronics during the manufacturing phase of the sensor and in some cases in subsequent life phases of the sensor, so as to allow an improved recognition of sensor environment over time to improve subsequent calibration of the sensor.
    Type: Application
    Filed: May 2, 2019
    Publication date: November 7, 2019
    Inventors: Naresh C. Bhavaraju, Becky L. Clark, Vincent P. Crabtree, Chris W. Dring, Arturo Garcia, Jason Halac, Jonathan Hughes, Jeff Jackson, Lauren Hruby Jepson, David I-Chun Lee, Ted Tang Lee, Rui Ma, Zebediah L. McDaniel, Jason Mitchell, Andrew Attila Pal, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Stephen J. Vanslyke, Matthew D. Wightlin, Anna Leigh Davis, Hari Hampapuram, Aditya Sagar Mandapaka, Alexander Leroy Teeter, Liang Wang
  • Publication number: 20190339222
    Abstract: Systems and methods are provided that address the need to frequently calibrate analyte sensors, according to implementation. In more detail, systems and methods provide a preconnected analyte sensor system that physically combines an analyte sensor to measurement electronics during the manufacturing phase of the sensor and in some cases in subsequent life phases of the sensor, so as to allow an improved recognition of sensor environment over time to improve subsequent calibration of the sensor.
    Type: Application
    Filed: May 2, 2019
    Publication date: November 7, 2019
    Inventors: Naresh C. Bhavaraju, Becky L. Clark, Vincent P. Crabtree, Chris W. Dring, Arturo Garcia, Jason Halac, Jonathan Hughes, Jeff Jackson, Lauren Hruby Jepson, David I-Chun Lee, Ted Tang Lee, Rui Ma, Zebediah L. McDaniel, Jason Mitchell, Andrew Attila Pal, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Stephen J. Vanslyke, Matthew D. Wightlin, Anna Leigh Davis, Hari Hampapuram, Aditya Sagar Mandapaka, Alexander Leroy Teeter, Liang Wang
  • Publication number: 20190339223
    Abstract: Systems and methods are provided that address the need to frequently calibrate analyte sensors, according to implementation. In more detail, systems and methods provide a preconnected analyte sensor system that physically combines an analyte sensor to measurement electronics during the manufacturing phase of the sensor and in some cases in subsequent life phases of the sensor, so as to allow an improved recognition of sensor environment over time to improve subsequent calibration of the sensor.
    Type: Application
    Filed: May 2, 2019
    Publication date: November 7, 2019
    Inventors: Naresh C. Bhavaraju, Becky L. Clark, Vincent P. Crabtree, Chris W. Dring, Arturo Garcia, Jason Halac, Jonathan Hughes, Jeff Jackson, Lauren Hruby Jepson, David I-Chun Lee, Ted Tang Lee, Rui Ma, Zebediah L. McDaniel, Jason Mitchell, Andrew Attila Pal, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Stephen J. Vanslyke, Matthew D. Wightlin, Anna Leigh Davis, Hari Hampapuram, Aditya Sagar Mandapaka, Alexander Leroy Teeter, Liang Wang
  • Publication number: 20190339224
    Abstract: Systems and methods are provided that address the need to frequently calibrate analyte sensors, according to implementation. In more detail, systems and methods provide a preconnected analyte sensor system that physically combines an analyte sensor to measurement electronics during the manufacturing phase of the sensor and in some cases in subsequent life phases of the sensor, so as to allow an improved recognition of sensor environment over time to improve subsequent calibration of the sensor.
    Type: Application
    Filed: May 2, 2019
    Publication date: November 7, 2019
    Inventors: Naresh C. Bhavaraju, Becky L. Clark, Vincent P. Crabtree, Chris W. Dring, Arturo Garcia, Jason Halac, Jonathan Hughes, Jeff Jackson, Lauren Hruby Jepson, David I-Chun Lee, Ted Tang Lee, Rui Ma, Zebediah L. McDaniel, Jason Mitchell, Andrew Attila Pal, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Stephen J. Vanslyke, Matthew D. Wightlin, Anna Leigh Davis, Hari Hampapuram, Aditya Sagar Mandapaka, Alexander Leroy Teeter, Liang Wang
  • Publication number: 20190307371
    Abstract: Described here are embodiments of processes and systems for the continuous manufacturing of implantable continuous analyte sensors. In some embodiments, a method is provided for sequentially advancing an elongated conductive body through a plurality of stations, each configured to treat the elongated conductive body. In some of these embodiments, one or more of the stations is configured to coat the elongated conductive body using a meniscus coating process, whereby a solution formed of a polymer and a solvent is prepared, the solution is continuously circulated to provide a meniscus on a top portion of a vessel holding the solution, and the elongated conductive body is advanced through the meniscus. The method may also comprise the step of removing excess coating material from the elongated conductive body by advancing the elongated conductive body through a die orifice.
    Type: Application
    Filed: June 25, 2019
    Publication date: October 10, 2019
    Inventors: Robert Boock, Jeff Jackson, Huashi Zhang, Jason Mitchell
  • Publication number: 20190261904
    Abstract: Systems and methods are disclosed which provide for a “factory-calibrated” sensor. In doing so, the systems and methods include predictive prospective modeling of sensor behavior, and also include predictive modeling of physiology. With these two correction factors, a consistent determination of sensitivity can be achieved, thus achieving factory calibration.
    Type: Application
    Filed: May 8, 2019
    Publication date: August 29, 2019
    Inventors: Rui Ma, Naresh C. Bhavaraju, Thomas Stuart Hamilton, Jonathan Hughes, Jeff Jackson, David I-Chun Lee, Peter C. Simpson, Stephen J. Vanslyke
  • Patent number: 10362975
    Abstract: Systems and methods are disclosed which provide for a “factory-calibrated” sensor. In doing so, the systems and methods include predictive prospective modeling of sensor behavior, and also include predictive modeling of physiology. With these two correction factors, a consistent determination of sensitivity can be achieved, thus achieving factory calibration.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: July 30, 2019
    Assignee: DexCom, Inc.
    Inventors: Rui Ma, Naresh C. Bhavaraju, Thomas Stuart Hamilton, Jonathan Hughes, Jeff Jackson, David I-Chun Lee, Peter C. Simpson, Stephen J. Vanslyke
  • Patent number: 10327687
    Abstract: Systems and methods are disclosed which provide for a “factory-calibrated” sensor. In doing so, the systems and methods include predictive prospective modeling of sensor behavior, and also include predictive modeling of physiology. With these two correction factors, a consistent determination of sensitivity can be achieved, thus achieving factory calibration.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: June 25, 2019
    Assignee: DexCom, Inc.
    Inventors: Rui Ma, Naresh C. Bhavaraju, Thomas Stuart Hamilton, Jonathan Hughes, Jeff Jackson, David I-Chun Lee, Peter C. Simpson, Stephen J. Vanslyke
  • Publication number: 20190167163
    Abstract: Analyte sensors and methods of manufacturing same are provided, including analyte sensors comprising multi-axis flexibility. For example, a multi-electrode sensor system 800 comprising two working electrodes and at least one reference/counter electrode is provided. The sensor system 800 comprises first and second elongated bodies E1, E2, each formed of a conductive core or of a core with a conductive layer deposited thereon, insulating layer 810 that separates the conductive layer 820 from the elongated body, a membrane layer deposited on top of the elongated bodies E1, E2, and working electrodes 802?, 802? formed by removing portions of the conductive layer 820 and the insulating layer 810, thereby exposing electroactive surface of the elongated bodies E1, E2.
    Type: Application
    Filed: January 17, 2019
    Publication date: June 6, 2019
    Inventors: Peter C. Simpson, Robert J. Boock, Paul V. Neale, Sebastian Böhm, Matthew Wightlin, Jack Pryor, Jason Mitchell, Jeff Jackson, Kaushik Patel, Antonio C. Llevares
  • Publication number: 20190117133
    Abstract: Pre-connected analyte sensors are provided. A pre-connected analyte sensor includes a sensor carrier attached to an analyte sensor. The sensor carrier includes a substrate configured for mechanical coupling of the sensor to testing, calibration, or wearable equipment. The sensor carrier also includes conductive contacts for electrically coupling sensor electrodes to the testing, calibration, or wearable equipment.
    Type: Application
    Filed: October 23, 2018
    Publication date: April 25, 2019
    Inventors: Jason Halac, John Charles Barry, Becky L. Clark, Chris W. Dring, John Michael Gray, Kris Elliot Higley, Jeff Jackson, David A. Keller, Ted Tang Lee, Jason Mitchell, Kenneth Pirondini, David Rego, Ryan Everett Schoonmaker, Peter C. Simpson, Craig Thomas Gadd, Kyle Thomas Stewart
  • Publication number: 20190120784
    Abstract: Pre-connected analyte sensors are provided. A pre-connected analyte sensor includes a sensor carrier attached to an analyte sensor. The sensor carrier includes a substrate configured for mechanical coupling of the sensor to testing, calibration, or wearable equipment. The sensor carrier also includes conductive contacts for electrically coupling sensor electrodes to the testing, calibration, or wearable equipment.
    Type: Application
    Filed: October 23, 2018
    Publication date: April 25, 2019
    Inventors: Jason Halac, John Charles Barry, Becky L. Clark, Chris W. Dring, John Michael Gray, Kris Elliot Higley, Jeff Jackson, David A. Keller, Ted Tang Lee, Jason Mitchell, Kenneth Pirondini, David Rego, Ryan Everett Schoonmaker, Peter C. Simpson, Craig Thomas Gadd, Kyle Thomas Stewart
  • Publication number: 20190117131
    Abstract: Pre-connected analyte sensors are provided. A pre-connected analyte sensor includes a sensor carrier attached to an analyte sensor. The sensor carrier includes a substrate configured for mechanical coupling of the sensor to testing, calibration, or wearable equipment. The sensor carrier also includes conductive contacts for electrically coupling sensor electrodes to the testing, calibration, or wearable equipment.
    Type: Application
    Filed: October 23, 2018
    Publication date: April 25, 2019
    Inventors: Jason Halac, John Charles Barry, Becky L. Clark, Chris W. Dring, John Michael Gray, Kris Elliot Higley, Jeff Jackson, David A. Keller, Ted Tang Lee, Jason Mitchell, Kenneth Pirondini, David Rego, Ryan Everett Schoonmaker, Peter C. Simpson, Craig Thomas Gadd, Kyle Thomas Stewart
  • Publication number: 20190120785
    Abstract: Pre-connected analyte sensors are provided. A pre-connected analyte sensor includes a sensor carrier attached to an analyte sensor. The sensor carrier includes a substrate configured for mechanical coupling of the sensor to testing, calibration, or wearable equipment. The sensor carrier also includes conductive contacts for electrically coupling sensor electrodes to the testing, calibration, or wearable equipment.
    Type: Application
    Filed: October 23, 2018
    Publication date: April 25, 2019
    Inventors: Jason Halac, John Charles Barry, Becky L. Clark, Chris W. Dring, John Michael Gray, Kris Elliot Higley, Jeff Jackson, David A. Keller, Ted Tang Lee, Jason Mitchell, Kenneth Pirondini, David Rego, Ryan Everett Schoonmaker, Peter C. Simpson, Craig Thomas Gadd, Kyle Thomas Stewart
  • Publication number: 20180042529
    Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.
    Type: Application
    Filed: October 26, 2017
    Publication date: February 15, 2018
    Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
  • Publication number: 20180036020
    Abstract: Devices and methods for applying antigens for allergy testing. In certain embodiments the device comprises an elongated body comprising a first end and a second end and a curved lower surface extending between the first and second ends. The device may also comprise a substantially planar upper surface extending between the first and second ends, and a plurality of prongs extending from the curved lower surface. In specific embodiments, the plurality of prongs comprises at least a first prong and a second prong, and the angle between the first prong and the second prong is between 45 and 90 degrees when the device is viewed from the first end.
    Type: Application
    Filed: August 1, 2017
    Publication date: February 8, 2018
    Inventors: Ronald BARSHOP, Jeff JACKSON
  • Publication number: 20180000388
    Abstract: Analyte sensors and methods of manufacturing same are provided, including analyte sensors comprising multi-axis flexibility. For example, a multi-electrode sensor system 800 comprising two working electrodes and at least one reference/counter electrode is provided. The sensor system 800 comprises first and second elongated bodies E1, E2, each formed of a conductive core or of a core with a conductive layer deposited thereon, insulating layer 810 that separates the conductive layer 820 from the elongated body, a membrane layer deposited on top of the elongated bodies E1, E2, and working electrodes 802?, 802? formed by removing portions of the conductive layer 820 and the insulating layer 810, thereby exposing electroactive surface of the elongated bodies E1, E2.
    Type: Application
    Filed: August 22, 2017
    Publication date: January 4, 2018
    Inventors: Peter C. Simpson, Robert J. Boock, Paul V. Neale, Sebastian Böhm, Matthew Wightlin, Jack Pryor, Jason Mitchell, Jeff Jackson, Kaushik Patel, Antonio C. Llevares