Patents by Inventor Jeff Jackson

Jeff Jackson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8828201
    Abstract: Analyte sensors and methods of manufacturing same are provided, including analyte sensors comprising multi-axis flexibility. For example, a multi-electrode sensor system 800 comprising two working electrodes and at least one reference/counter electrode is provided. The sensor system 800 comprises first and second elongated bodies E1, E2, each formed of a conductive core or of a core with a conductive layer deposited thereon, insulating layer 810 that separates the conductive layer 820 from the elongated body, a membrane layer deposited on top of the elongated bodies E1, E2, and working electrodes 802?, 802? formed by removing portions of the conductive layer 820 and the insulating layer 810, thereby exposing electroactive surface of the elongated bodies E1, E2.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: September 9, 2014
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Robert Boock, Paul V. Neale, Sebastian Bohm, Matthew Wightlin, Jack Pryor, Jason Mitchell, Jeff Jackson, Kaushik Patel, Antonio C. Llevares
  • Publication number: 20140213866
    Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.
    Type: Application
    Filed: April 10, 2014
    Publication date: July 31, 2014
    Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
  • Publication number: 20140123893
    Abstract: Described here are embodiments of processes and systems for the continuous manufacturing of implantable continuous analyte sensors. In some embodiments, a method is provided for sequentially advancing an elongated conductive body through a plurality of stations, each configured to treat the elongated conductive body. In some of these embodiments, one or more of the stations is configured to coat the elongated conductive body using a meniscus coating process, whereby a solution formed of a polymer and a solvent is prepared, the solution is continuously circulated to provide a meniscus on a top portion of a vessel holding the solution, and the elongated conductive body is advanced through the meniscus. The method may also comprise the step of removing excess coating material from the elongated conductive body by advancing the elongated conductive body through a die orifice.
    Type: Application
    Filed: January 15, 2014
    Publication date: May 8, 2014
    Applicant: DexCom, Inc.
    Inventors: Robert Boock, Jeff Jackson, Huashi Zhang, Jason Mitchell
  • Patent number: 8249853
    Abstract: An embodiment of the present invention is a technique to process an input/output (I/O) transaction. An emulated device driver in a guest partition interacts with a virtual machine (VM) manager in processing an input/output (I/O) transaction on behalf of an application via an operating system (OS). The I/O transaction is between the application and a device. A device emulator in a service partition communicatively coupled to the emulated device driver interacts with the VM manager in processing the I/O transaction on behalf of a device specific driver via the OS. The device specific driver interfaces to the device.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: August 21, 2012
    Assignee: Intel Corporation
    Inventors: Jeff Jackson, Rinat Rappoport, Sergei Gofman, Michael D. Kinney
  • Publication number: 20110028816
    Abstract: Analyte sensors and methods of manufacturing same are provided, including analyte sensors comprising multi-axis flexibility. For example, a multi-electrode sensor system 800 comprising two working electrodes and at least one reference/counter electrode is provided. The sensor system 800 comprises first and second elongated bodies E1, E2, each formed of a conductive core or of a core with a conductive layer deposited thereon, insulating layer 810 that separates the conductive layer 820 from the elongated body, a membrane layer deposited on top of the elongated bodies E1, E2, and working electrodes 802?, 802? formed by removing portions of the conductive layer 820 and the insulating layer 810, thereby exposing electroactive surface of the elongated bodies E1, E2.
    Type: Application
    Filed: July 1, 2010
    Publication date: February 3, 2011
    Applicant: DexCom, Inc.
    Inventors: Peter C. Simpson, Robert Boock, Paul V. Neale, Sebastian Bohm, Matthew Wightlin, Jack Pryor, Jason Mitchell, Jeff Jackson, Kaushik Patel, Antonio C. Llevares
  • Publication number: 20110028815
    Abstract: Analyte sensors and methods of manufacturing same are provided, including analyte sensors comprising multi-axis flexibility. For example, a multi-electrode sensor system 800 comprising two working electrodes and at least one reference/counter electrode is provided. The sensor system 800 comprises first and second elongated bodies E1, E2, each formed of a conductive core or of a core with a conductive layer deposited thereon, insulating layer 810 that separates the conductive layer 820 from the elongated body, a membrane layer deposited on top of the elongated bodies E1, E2, and working electrodes 802?, 802? formed by removing portions of the conductive layer 820 and the insulating layer 810, thereby exposing electroactive surface of the elongated bodies E1, E2.
    Type: Application
    Filed: July 1, 2010
    Publication date: February 3, 2011
    Applicant: DexCom, Inc.
    Inventors: Peter C. Simpson, Robert Boock, Paul V. Neale, Sebastian Bohm, Matthew Wightlin, Jack Pryor, Jason Mitchell, Jeff Jackson, Kaushik Patel, Antonio C. Llevares
  • Publication number: 20110027453
    Abstract: Described here are embodiments of processes and systems for the continuous manufacturing of implantable continuous analyte sensors. In some embodiments, a method is provided for sequentially advancing an elongated conductive body through a plurality of stations, each configured to treat the elongated conductive body. In some of these embodiments, one or more of the stations is configured to coat the elongated conductive body using a meniscus coating process, whereby a solution formed of a polymer and a solvent is prepared, the solution is continuously circulated to provide a meniscus on a top portion of a vessel holding the solution, and the elongated conductive body is advanced through the meniscus. The method may also comprise the step of removing excess coating material from the elongated conductive body by advancing the elongated conductive body through a die orifice.
    Type: Application
    Filed: July 1, 2010
    Publication date: February 3, 2011
    Applicant: DexCom, Inc.
    Inventors: Robert Boock, Jeff Jackson, Huashi Zhang, Jason Mitchell
  • Publication number: 20110027127
    Abstract: Analyte sensors and methods of manufacturing same are provided, including analyte sensors comprising multi-axis flexibility. For example, a multi-electrode sensor system 800 comprising two working electrodes and at least one reference/counter electrode is provided. The sensor system 800 comprises first and second elongated bodies E1, E2, each formed of a conductive core or of a core with a conductive layer deposited thereon, insulating layer 810 that separates the conductive layer 820 from the elongated body, a membrane layer deposited on top of the elongated bodies E1, E2, and working electrodes 802?, 802? formed by removing portions of the conductive layer 820 and the insulating layer 810, thereby exposing electroactive surface of the elongated bodies E1, E2.
    Type: Application
    Filed: July 1, 2010
    Publication date: February 3, 2011
    Applicant: DexCom, Inc.
    Inventors: Peter C. Simpson, Robert Boock, Paul V. Neale, Sebastian Bohm, Matthew Wightlin, Jack Pryor, Jason Mitchell, Jeff Jackson, Kaushik Patel, Antonio C. Llevares
  • Publication number: 20110027458
    Abstract: Described here are embodiments of processes and systems for the continuous manufacturing of implantable continuous analyte sensors. In some embodiments, a method is provided for sequentially advancing an elongated conductive body through a plurality of stations, each configured to treat the elongated conductive body. In some of these embodiments, one or more of the stations is configured to coat the elongated conductive body using a meniscus coating process, whereby a solution formed of a polymer and a solvent is prepared, the solution is continuously circulated to provide a meniscus on a top portion of a vessel holding the solution, and the elongated conductive body is advanced through the meniscus. The method may also comprise the step of removing excess coating material from the elongated conductive body by advancing the elongated conductive body through a die orifice.
    Type: Application
    Filed: July 1, 2010
    Publication date: February 3, 2011
    Applicant: DexCom, Inc.
    Inventors: Robert Boock, Jeff Jackson, Huashi Zhang, Jason Mitchell
  • Publication number: 20110024043
    Abstract: Described here are embodiments of processes and systems for the continuous manufacturing of implantable continuous analyte sensors. In some embodiments, a method is provided for sequentially advancing an elongated conductive body through a plurality of stations, each configured to treat the elongated conductive body. In some of these embodiments, one or more of the stations is configured to coat the elongated conductive body using a meniscus coating process, whereby a solution formed of a polymer and a solvent is prepared, the solution is continuously circulated to provide a meniscus on a top portion of a vessel holding the solution, and the elongated conductive body is advanced through the meniscus. The method may also comprise the step of removing excess coating material from the elongated conductive body by advancing the elongated conductive body through a die orifice.
    Type: Application
    Filed: July 1, 2010
    Publication date: February 3, 2011
    Applicant: DexCom, Inc.
    Inventors: Robert Boock, Jeff Jackson, Huashi Zhang, Jason Mitchell
  • Patent number: 7876765
    Abstract: A method for preventing loopback of data packets sent between entities residing on a single host. In one embodiment, an auxiliary address shared among entities residing on the host indicates that a data packet is to be routed to an entity residing on the host. In another embodiment, a source address and a target address in a data packet header are switched while being routed to a target entity residing on the host.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: January 25, 2011
    Assignee: Intel Corporation
    Inventors: Sergei Gofman, Lenz Oron, Jeff Jackson
  • Patent number: 7613809
    Abstract: Methods, apparatuses, articles, and systems for receiving a request for an allocation of one or more ephemeral ports from a pool of ephemeral ports associated with a physical device, for a virtual machine of the physical device, are described herein. In various embodiments, an ephemeral port manager of the physical device is adapted to allocate up to the one or more ephemeral ports requested from the pool of ephemeral ports, if up to the one or more ephemeral ports are available for allocation from the pool of ephemeral ports. In some embodiments, the ephemeral port manager is further adapted to mark the allocated one or more ephemeral ports as unavailable to meet an ephemeral port allocation request of another virtual machine of the physical device.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: November 3, 2009
    Assignee: Intel Corporation
    Inventors: Jeff Jackson, Sergei Gofman
  • Publication number: 20080091469
    Abstract: A system for prescribing a customized medical procedure that is to be performed on an individual patient.
    Type: Application
    Filed: October 17, 2006
    Publication date: April 17, 2008
    Inventors: Lee Allen, Jeff Jackson, Travis Wilhelmsen, Nathan Pryor, Lou Graham, David A. Little, Kerri M. Sebring
  • Publication number: 20080080512
    Abstract: A method for preventing loopback of data packets sent between entities residing on a single host. In one embodiment, an auxiliary address shared among entities residing on the host indicates that a data packet is to be routed to an entity residing on the host. In another embodiment, a source address and a target address in a data packet header are switched while being routed to a target entity residing on the host.
    Type: Application
    Filed: September 29, 2006
    Publication date: April 3, 2008
    Inventors: Sergei Gofman, Lenz Oron, Jeff Jackson
  • Publication number: 20070283015
    Abstract: Methods, apparatuses, articles, and systems for receiving a request for an allocation of one or more ephemeral ports from a pool of ephemeral ports associated with a physical device, for a virtual machine of the physical device, are described herein. In various embodiments, an ephemeral port manager of the physical device is adapted to allocate up to the one or more ephemeral ports requested from the pool of ephemeral ports, if up to the one or more ephemeral ports are available for allocation from the pool of ephemeral ports. In some embodiments, the ephemeral port manager is further adapted to mark the allocated one or more ephemeral ports as unavailable to meet an ephemeral port allocation request of another virtual machine of the physical device.
    Type: Application
    Filed: May 30, 2006
    Publication date: December 6, 2007
    Inventors: Jeff Jackson, Sergei Gofman
  • Publication number: 20070233775
    Abstract: An embodiment of the present invention is a technique to process an input/output (I/O) transaction. An emulated device driver in a guest partition interacts with a virtual machine (VM) manager in processing an input/output (I/O) transaction on behalf of an application via an operating system (OS). The I/O transaction is between the application and a device. A device emulator in a service partition communicatively coupled to the emulated device driver interacts with the VM manager in processing the I/O transaction on behalf of a device specific driver via the OS. The device specific driver interfaces to the device.
    Type: Application
    Filed: March 31, 2006
    Publication date: October 4, 2007
    Inventors: Jeff Jackson, Rinat Rappoport, Sergei Gofman, Michael Kinney
  • Patent number: 6394044
    Abstract: A method of cooling a locomotive engine wherein the temperature of the coolant flowing into the engine is controlled in response to the temperature of the lube oil flowing out of the engine so that the difference between these two temperatures is limited to a predetermined value in order to limit the differential expansion between parts within the engine. The predetermined value may be a function of the lube oil temperature, and it may have an absolute maximum value. In the event that the temperature difference exceeds a predetermined value, the power output of the engine may be reduced as a function of the length of time that the temperature difference limit has been exceeded. The rate of change in coolant temperature may be limited during periods of decreasing lube oil temperature in order to limit the duty cycle demand on coolant system components.
    Type: Grant
    Filed: March 8, 2000
    Date of Patent: May 28, 2002
    Assignee: General Electric Company
    Inventors: Prakash Bedapudi, Jeff Jackson Sims