Patents by Inventor Jeffery D. Bielefeld

Jeffery D. Bielefeld has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230197836
    Abstract: Described herein are integrated circuit devices with conductive regions formed from MX or MAX materials. MAX materials are layered, hexagonal carbides and nitrides that include an early transition metal (M) and an A group element (A). MX materials remove the A group element. MAX and MX materials are highly conductive, and their two-dimensional layer structure allows very thin layers to be formed. MAX or MX materials can be used to form several conductive elements of IC circuits, including contacts, interconnects, or liners or barrier regions for contacts or interconnects.
    Type: Application
    Filed: December 21, 2021
    Publication date: June 22, 2023
    Applicant: Intel Corporation
    Inventors: Carl Hugo Naylor, Christopher J. Jezewski, Jeffery D. Bielefeld, Jiun-Ruey Chen, Ramanan V. CHEBIAM, Mauro J. Kobrinsky, Matthew V. Metz, Scott B. Clendenning, Sudurat Lee, Kevin P. O'Brien, Kirby Kurtis Maxey, Ashish Verma Penumatcha, Chelsey Jane Dorow, Uygar E. Avci
  • Patent number: 11437283
    Abstract: Backside contact structures include etch selective materials to facilitate backside contact formation. An integrated circuit structure includes a frontside contact region, a device region below the frontside contact region, and a backside contact region below the device region. The device region includes a transistor. The backside contact region includes a first dielectric material under a source or drain region of the transistor, a second dielectric material laterally adjacent to the first dielectric material and under a gate structure of the transistor. A non-conductive spacer is between the first and second dielectric materials. The first and second dielectric materials are selectively etchable with respect to one another and the spacer. The backside contact region may include an interconnect feature that, for instance, passes through the first dielectric material and contacts a bottom side of the source/drain region, and/or passes through the second dielectric material and contacts the gate structure.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: September 6, 2022
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Ehren Mannebach, Anh Phan, Richard E. Schenker, Stephanie A. Bojarski, Willy Rachmady, Patrick R. Morrow, Jeffery D. Bielefeld, Gilbert Dewey, Hui Jae Yoo
  • Patent number: 11406972
    Abstract: Catalysts for facilitating cross-linking of liquid precursors into solid dielectric materials are disclosed. Initially, catalysts are protected, either by coordination with other compounds or by conversion to an ionic salt. Protection prevents catalysts from facilitating cross-linking unless activated. A catalyst is activated upon receiving an excitation, e.g. thermal excitation by heating. Upon receiving an excitation, protection of a catalyst dissociates, decomposes, becomes neutralized, or is otherwise transformed to allow the catalyst to facilitate cross-linking of the precursors into solid dielectric materials. Methods for fabricating dielectric materials using such protected catalysts as well as devices comprising the resulting materials are also described. Dielectric materials comprising cross-linked cyclic carbosilane units having a ring structure including C and Si may be formed in this manner.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: August 9, 2022
    Assignee: Intel Corporation
    Inventors: James M. Blackwell, David J. Michalak, Jessica M. Torres, Marie Krysak, Jeffery D. Bielefeld
  • Patent number: 11152254
    Abstract: An integrated circuit die, a semiconductor structure, and a method of fabricating the semiconductor structure are disclosed. The integrated circuit die includes a substrate and a first anchor and a second anchor disposed on the substrate in a first plane. The integrated circuit die also includes a first wire disposed on the first anchor in the first plane, a third wire disposed on the second anchor in the first plane, and a second wire and a fourth wire suspended above the substrate in the first plane. The second wire is disposed between the first wire and the third wire and the third wire is disposed between the second wire and the fourth wire. The integrated circuit die further includes a dielectric material disposed between upper portions of the first wire, the second wire, the third wire, and the fourth wire to encapsulate an air gap.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: October 19, 2021
    Assignee: Intel Corporation
    Inventors: Manish Chandhok, Sudipto Naskar, Stephanie A. Bojarski, Kevin Lin, Marie Krysak, Tristan A. Tronic, Hui Jae Yoo, Jeffery D. Bielefeld, Jessica M. Torres
  • Publication number: 20210225698
    Abstract: Dielectric helmet-based approaches for back end of line (BEOL) interconnect fabrication, and the resulting structures, are described. In an example, a semiconductor structure includes a substrate. A plurality of alternating first and second conductive line types is disposed along a same direction of a back end of line (BEOL) metallization layer disposed in an inter-layer dielectric (ILD) layer disposed above the substrate. A dielectric layer is disposed on an uppermost surface of the first conductive line types but not along sidewalls of the first conductive line types, and is disposed along sidewalls of the second conductive line types but not on an uppermost surface of the second conductive line types.
    Type: Application
    Filed: March 30, 2021
    Publication date: July 22, 2021
    Inventors: Kevin L. LIN, Richard E. SCHENKER, Jeffery D. BIELEFELD, Rami HOURANI, Manish CHANDHOK
  • Patent number: 11024538
    Abstract: In an example, there is disclosed an integrated circuit, having: a first layer having a dielectric, a first conductive interconnect and a second conductive interconnect; a second layer having a third conductive interconnect; a conductive via between the first layer and the second layer to electrically couple the second conductive interconnect to the third conductive interconnect; and an etch-resistant plug disposed vertically between the first layer and second layer and disposed to prevent the via from electrically shorting to the first conductive interconnect.
    Type: Grant
    Filed: December 31, 2016
    Date of Patent: June 1, 2021
    Assignee: Intel Corporation
    Inventors: Kevin L. Lin, Tayseer Mahdi, Jessica M. Torres, Jeffery D. Bielefeld, Marie Krysak, James M. Blackwell
  • Patent number: 11011463
    Abstract: Dielectric helmet-based approaches for back end of line (BEOL) interconnect fabrication, and the resulting structures, are described. In an example, a semiconductor structure includes a substrate. A plurality of alternating first and second conductive line types is disposed along a same direction of a back end of line (BEOL) metallization layer disposed in an inter-layer dielectric (ILD) layer disposed above the substrate. A dielectric layer is disposed on an uppermost surface of the first conductive line types but not along sidewalls of the first conductive line types, and is disposed along sidewalls of the second conductive line types but not on an uppermost surface of the second conductive line types.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: May 18, 2021
    Assignee: Intel Corporation
    Inventors: Kevin L. Lin, Richard E. Schenker, Jeffery D. Bielefeld, Rami Hourani, Manish Chandhok
  • Patent number: 10868246
    Abstract: Conductive bridge random access memory (CBRAM) devices with low thermal conductivity electrolyte sublayers are described. In an example, a conductive bridge random access memory (CBRAM) device includes a conductive interconnect disposed in an inter-layer dielectric (ILD) layer disposed above a substrate. The CBRAM device also includes a CBRAM element disposed on the conductive interconnect. The CBRAM element includes an active electrode layer disposed on the conductive interconnect, and a resistance switching layer disposed on the active electrode layer. The resistance switching layer includes a first electrolyte material layer disposed on a second electrolyte material layer, the second electrolyte material layer disposed on the active electrode layer and having a thermal conductivity lower than a thermal conductivity of the first electrolyte material layer. A passive electrode layer is disposed on the first electrolyte material of the resistance switching layer.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: December 15, 2020
    Assignee: Intel Corporation
    Inventors: Elijah V. Karpov, Roza Kotlyar, Prashant Majhi, Jeffery D. Bielefeld
  • Publication number: 20200294998
    Abstract: Backside contact structures include etch selective materials to facilitate backside contact formation. An integrated circuit structure includes a frontside contact region, a device region below the frontside contact region, and a backside contact region below the device region. The device region includes a transistor. The backside contact region includes a first dielectric material under a source or drain region of the transistor, a second dielectric material laterally adjacent to the first dielectric material and under a gate structure of the transistor. A non-conductive spacer is between the first and second dielectric materials. The first and second dielectric materials are selectively etchable with respect to one another and the spacer. The backside contact region may include an interconnect feature that, for instance, passes through the first dielectric material and contacts a bottom side of the source/drain region, and/or passes through the second dielectric material and contacts the gate structure.
    Type: Application
    Filed: March 15, 2019
    Publication date: September 17, 2020
    Applicant: INTEL CORPORATION
    Inventors: AARON D. LILAK, EHREN MANNEBACH, ANH PHAN, RICHARD E. SCHENKER, STEPHANIE A. BOJARSKI, WILLY RACHMADY, PATRICK R. MORROW, JEFFERY D. BIELEFELD, GILBERT DEWEY, HUI JAE YOO
  • Patent number: 10665781
    Abstract: An embodiment includes a programmable metallization cell (PMC) memory comprising: a top electrode and a bottom electrode; a metal layer between the top and bottom electrodes; and a solid electrolyte (SE) layer between the metal layer and the bottom electrode; wherein (a) the metal layer includes an alloy of first and second metals, and (b) metal ions from the first metal form a conductive path in the SE layer when the top electrode is positively biased and disband the conductive path when the top electrode is negatively biased. Other embodiments are described herein.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: May 26, 2020
    Assignee: Intel Corporation
    Inventors: Elijah V. Karpov, Jeffery D. Bielefeld, James S. Clarke, Ravi Pillarisetty, Uday Shah
  • Publication number: 20200098629
    Abstract: In an example, there is disclosed an integrated circuit, having: a first layer having a dielectric, a first conductive interconnect and a second conductive interconnect; a second layer having a third conductive interconnect; a conductive via between the first layer and the second layer to electrically couple the second conductive interconnect to the third conductive interconnect; and an etch-resistant plug disposed vertically between the first layer and second layer and disposed to prevent the via from electrically shorting to the first conductive interconnect.
    Type: Application
    Filed: December 31, 2016
    Publication date: March 26, 2020
    Applicant: Intel Corporation
    Inventors: Kevin L. Lin, Tayseer Mahdi, Jessica M. Torres, Jeffery D. Bielefeld, Marie Krysak, James M. Blackwell
  • Patent number: 10529660
    Abstract: Pore-filled dielectric materials for semiconductor structure fabrication, and methods of fabricating pore-filled dielectric materials for semiconductor structure fabrication, are described. In an example, a method of fabricating a pore-filled dielectric material for semiconductor structure fabrication includes forming a trench in a material layer. The method also includes filling the trench with a porous dielectric material using a spin-on deposition process. The method also includes filling pores of the porous dielectric material with a metal-containing material using an atomic layer deposition (ALD) process.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: January 7, 2020
    Assignee: Intel Corporation
    Inventors: Jessica M. Torres, Jeffery D. Bielefeld, Mauro J. Kobrinsky, Christopher J. Jezewski, Gopinath Bhimarasetti
  • Publication number: 20190385897
    Abstract: An integrated circuit die, a semiconductor structure, and a method of fabricating the semiconductor structure are disclosed. The integrated circuit die includes a substrate and a first anchor and a second anchor disposed on the substrate in a first plane. The integrated circuit die also includes a first wire disposed on the first anchor in the first plane, a third wire disposed on the second anchor in the first plane, and a second wire and a fourth wire suspended above the substrate in the first plane. The second wire is disposed between the first wire and the third wire and the third wire is disposed between the second wire and the fourth wire. The integrated circuit die further includes a dielectric material disposed between upper portions of the first wire, the second wire, the third wire, and the fourth wire to encapsulate an air gap.
    Type: Application
    Filed: December 28, 2016
    Publication date: December 19, 2019
    Inventors: Manish CHANDHOK, Sudipto NASKAR, Stephanie A. BOJARSKI, Kevin LIN, Marie KRYSAK, Tristan A. TRONIC, Hui Jae YOO, Jeffery D. BIELEFELD, Jessica M. TORRES
  • Patent number: 10483160
    Abstract: A helmet layer is deposited on a plurality of conductive features on a first dielectric layer on a substrate. A second dielectric layer is deposited on a first portion of the helmet layer. An etch stop layer is deposited on a second portion the helmet layer.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: November 19, 2019
    Assignee: Intel Corporation
    Inventors: Jeffery D. Bielefeld, Manish Chandhok, Asad Iqbal, John D. Brooks
  • Publication number: 20190252313
    Abstract: Pore-filled dielectric materials for semiconductor structure fabrication, and methods of fabricating pore-filled dielectric materials for semiconductor structure fabrication, are described. In an example, a method of fabricating a pore-filled dielectric material for semiconductor structure fabrication includes forming a trench in a material layer. The method also includes filling the trench with a porous dielectric material using a spin-on deposition process. The method also includes filling pores of the porous dielectric material with a metal-containing material using an atomic layer deposition (ALD) process.
    Type: Application
    Filed: September 30, 2016
    Publication date: August 15, 2019
    Inventors: Jessica M. TORRES, Jeffery D. BIELEFELD, Mauro J. KOBRINSKY, Christopher J. JEZEWSKI, Gopinath BHIMARASETTI
  • Publication number: 20190229264
    Abstract: Conductive bridge random access memory (CBRAM) devices with low thermal conductivity electrolyte sublayers are described. In an example, a conductive bridge random access memory (CBRAM) device includes a conductive interconnect disposed in an inter-layer dielectric (ILD) layer disposed above a substrate. The CBRAM device also includes a CBRAM element disposed on the conductive interconnect. The CBRAM element includes an active electrode layer disposed on the conductive interconnect, and a resistance switching layer disposed on the active electrode layer. The resistance switching layer includes a first electrolyte material layer disposed on a second electrolyte material layer, the second electrolyte material layer disposed on the active electrode layer and having a thermal conductivity lower than a thermal conductivity of the first electrolyte material layer. A passive electrode layer is disposed on the first electrolyte material of the resistance switching layer.
    Type: Application
    Filed: September 30, 2016
    Publication date: July 25, 2019
    Inventors: Elijah V. KARPOV, Roza KOTLYAR, Prashant MAJHI, Jeffery D. BIELEFELD
  • Publication number: 20190139887
    Abstract: Dielectric helmet-based approaches for back end of line (BEOL) interconnect fabrication, and the resulting structures, are described. In an example, a semiconductor structure includes a substrate. A plurality of alternating first and second conductive line types is disposed along a same direction of a back end of line (BEOL) metallization layer disposed in an inter-layer dielectric (ILD) layer disposed above the substrate. A dielectric layer is disposed on an uppermost surface of the first conductive line types but not along sidewalls of the first conductive line types, and is disposed along sidewalls of the second conductive line types but not on an uppermost surface of the second conductive line types.
    Type: Application
    Filed: July 1, 2016
    Publication date: May 9, 2019
    Inventors: Kevin L. LIN, Richard E. SCHENKER, Jeffery D. BIELEFELD, Rami HOURANI, Manish CHANDHOK
  • Publication number: 20190058115
    Abstract: An embodiment includes a programmable metallization cell (PMC) memory comprising: a top electrode and a bottom electrode; a metal layer between the top and bottom electrodes; and a solid electrolyte (SE) layer between the metal layer and the bottom electrode; wherein (a) the metal layer includes an alloy of first and second metals, and (b) metal ions from the first metal form a conductive path in the SE layer when the top electrode is positively biased and disband the conductive path when the top electrode is negatively biased. Other embodiments are described herein.
    Type: Application
    Filed: March 31, 2016
    Publication date: February 21, 2019
    Inventors: Elijah V. Karpov, Jeffery D. Bielefeld, James S. Clarke, Ravi Pillarisetty, Uday Shah
  • Publication number: 20180236440
    Abstract: Catalysts for facilitating cross-linking of liquid precursors into solid dielectric materials are disclosed. Initially, catalysts are protected, either by coordination with other compounds or by conversion to an ionic salt. Protection prevents catalysts from facilitating cross-linking unless activated. A catalyst is activated upon receiving an excitation, e.g. thermal excitation by heating. Upon receiving an excitation, protection of a catalyst dissociates, decomposes, becomes neutralized, or is otherwise transformed to allow the catalyst to facilitate cross-linking of the precursors into solid dielectric materials. Methods for fabricating dielectric materials using such protected catalysts as well as devices comprising the resulting materials are also described. Dielectric materials comprising cross-linked cyclic carbosilane units having a ring structure including C and Si may be formed in this manner.
    Type: Application
    Filed: December 4, 2015
    Publication date: August 23, 2018
    Applicant: Intel Corporation
    Inventors: James M. BLACKWELL, David J. Michalak, Jessica M. Torres, Marie KRYSAK, Jeffery D. Bielefeld
  • Publication number: 20180226289
    Abstract: A helmet layer is deposited on a plurality of conductive features on a first dielectric layer on a substrate. A second dielectric layer is deposited on a first portion of the helmet layer. An etch stop layer is deposited on a second portion the helmet layer.
    Type: Application
    Filed: September 23, 2015
    Publication date: August 9, 2018
    Inventors: Jeffery D. BIELEFELD, Manish CHANDHOK, Asad IQBAL, John D. BROOKS