Patents by Inventor Jeffrey A. McKee

Jeffrey A. McKee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180175093
    Abstract: Photosensitive devices and associated methods are provided. In one aspect, for example, a photosensitive imager device can include a semiconductor substrate having multiple doped regions forming at least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation, and an electrical transfer element coupled to the semiconductor substrate and operable to transfer an electrical signal from the at least one junction. In one aspect, the textured region is operable to facilitate generation of an electrical signal from the detection of infrared electromagnetic radiation. In another aspect, interacting with electromagnetic radiation further includes increasing the semiconductor substrate's effective absorption wavelength as compared to a semiconductor substrate lacking a textured region.
    Type: Application
    Filed: February 16, 2018
    Publication date: June 21, 2018
    Inventors: Homayoon Haddad, Jutao Jiang, Jeffrey McKee, Drake Miller, Leonard Forbes, Chintamani Palsule
  • Patent number: 9911781
    Abstract: Photosensitive devices and associated methods are provided. In one aspect, for example, a photosensitive imager device can include a semiconductor substrate having multiple doped regions forming at least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation, and an electrical transfer element coupled to the semiconductor substrate and operable to transfer an electrical signal from the at least one junction. In one aspect, the textured region is operable to facilitate generation of an electrical signal from the detection of infrared electromagnetic radiation. In another aspect, interacting with electromagnetic radiation further includes increasing the semiconductor substrate's effective absorption wavelength as compared to a semiconductor substrate lacking a textured region.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: March 6, 2018
    Assignee: SiOnyx, LLC
    Inventors: Homayoon Haddad, Jutao Jiang, Jeffrey McKee, Drake Miller, Leonard Forbes, Chintamani Palsule
  • Patent number: 9905599
    Abstract: Light trapping pixels, devices incorporating such pixels, and various associated methods are provided. In one aspect, for example, a light trapping pixel device can include a light sensitive pixel having a light incident surface, a backside surface opposite the light incident surface, and a peripheral sidewall disposed into at least a portion of the pixel and extending at least substantially around the pixel periphery. The pixel can also include a backside light trapping material substantially covering the backside surface and a peripheral light trapping material substantially covering the peripheral sidewall. The light contacting the backside light trapping material or the peripheral light trapping material is thus reflected back toward the pixel.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: February 27, 2018
    Assignee: SiOnyx, LLC
    Inventors: Martin U. Pralle, Jeffrey McKee, Jason Sickler
  • Publication number: 20170358621
    Abstract: A monolithic sensor for detecting infrared and visible light according to an example includes a semiconductor substrate and a semiconductor layer coupled to the semiconductor substrate. The semiconductor layer includes a device surface opposite the semiconductor substrate. A visible light photodiode is formed at the device surface. An infrared photodiode is also formed at the device surface and in proximity to the visible light photodiode. A textured region is coupled to the infrared photodiode and positioned to interact with electromagnetic radiation.
    Type: Application
    Filed: August 10, 2017
    Publication date: December 14, 2017
    Inventors: Jutao Jiang, Jeffrey McKee, Martin U. Pralle
  • Publication number: 20170309669
    Abstract: Photosensitive devices and associated methods are provided. In one aspect, for example, a photosensitive imager device can include a semiconductor substrate having multiple doped regions forming at least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation, and an electrical transfer element coupled to the semiconductor substrate and operable to transfer an electrical signal from the at least one junction. In one aspect, the textured region is operable to facilitate generation of an electrical signal from the detection of infrared electromagnetic radiation. In another aspect, interacting with electromagnetic radiation further includes increasing the semiconductor substrate's effective absorption wavelength as compared to a semiconductor substrate lacking a textured region.
    Type: Application
    Filed: March 24, 2014
    Publication date: October 26, 2017
    Applicant: SiOnyx, Inc.
    Inventors: Homayoon Haddad, Jutao Jiang, Jeffrey McKee, Drake Miller, Leonard Forbes, Chintamani Palsule
  • Publication number: 20170271391
    Abstract: Backside illuminated photosensitive devices and associated methods are provided. In one aspect, for example, a backside-illuminated photosensitive imager device can include a semiconductor substrate having multiple doped regions forming a least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation, and a passivation region positioned between the textured region and the at least one junction. The passivation region is positioned to isolate the at least one junction from the textured region, and the semiconductor substrate and the textured region are positioned such that incoming electromagnetic radiation to passes through the semiconductor substrate before contacting the textured region. Additionally, the device includes an electrical transfer element coupled to the semiconductor substrate to transfer an electrical signal from the at least one junction.
    Type: Application
    Filed: June 5, 2017
    Publication date: September 21, 2017
    Inventors: Homayoon Haddad, Jeffrey McKee, Jutao Jiang, Chintamani Palsule, Leonard Forbes
  • Publication number: 20170263671
    Abstract: Backside illuminated photosensitive devices and associated methods are provided. In one aspect, for example, a backside-illuminated photosensitive imager device can include a semiconductor substrate having multiple doped regions forming a least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation where the textured region includes surface features sized and positioned to facilitate tuning to a preselected wavelength of light, and a dielectric region positioned between the textured region and the at least one junction. The dielectric region is positioned to isolate the at least one junction from the textured region, and the semiconductor substrate and the textured region are positioned such that incoming electromagnetic radiation passes through the semiconductor substrate before contacting the textured region.
    Type: Application
    Filed: May 30, 2017
    Publication date: September 14, 2017
    Inventors: Homayoon Haddad, Jeffrey McKee, Jutao Jiang, Drake Miller, Chintamani Palsule, Leonard Forbes
  • Patent number: 9741761
    Abstract: A monolithic sensor for detecting infrared and visible light according to an example includes a semiconductor substrate and a semiconductor layer coupled to the semiconductor substrate. The semiconductor layer includes a device surface opposite the semiconductor substrate. A visible light photodiode is formed at the device surface. An infrared photodiode is also formed at the device surface and in proximity to the visible light photodiode. A textured region is coupled to the infrared photodiode and positioned to interact with electromagnetic radiation.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: August 22, 2017
    Assignee: SiOnyx, LLC
    Inventors: Jutao Jiang, Jeffrey McKee, Martin U. Pralle
  • Patent number: 9685536
    Abstract: Raised structures comprising overlying silicon layers formed by controlled selective epitaxial growth, and methods for forming such raised-structure on a semiconductor substrate are provided. The structures are formed by selectively growing an initial epitaxial layer of mono crystalline silicon on the surface of a semi conductive substrate, and forming a thin film of insulative material over the epitaxial layer. A second epitaxial layer is selectively, grown on the exposed surface of the initial epitaxially grown crystal layer, and a thin insulative film is deposited over the second epitaxial layer. Additional epitaxial layers are added as desired to provide a vertical structure of a desired height comprising multiple layers of single silicon crystals, each epitaxial layer have insulated sidewalls, with the uppermost epitaxial layer also with an insulated top surface.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: June 20, 2017
    Assignee: Conversant Intellectual Property Management Inc.
    Inventors: Er-Xuan Ping, Jeffrey A. McKee
  • Patent number: 9673243
    Abstract: Backside illuminated photosensitive devices and associated methods are provided. In one aspect, for example, a backside-illuminated photosensitive imager device can include a semiconductor substrate having multiple doped regions forming a least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation, and a passivation region positioned between the textured region and the at least one junction. The passivation region is positioned to isolate the at least one junction from the textured region, and the semiconductor substrate and the textured region are positioned such that incoming electromagnetic radiation passes through the semiconductor substrate before contacting the textured region. Additionally, the device includes an electrical transfer element coupled to the semiconductor substrate to transfer an electrical signal from the at least one junction.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: June 6, 2017
    Assignee: SiOnyx, LLC
    Inventors: Homayoon Haddad, Jeffrey McKee, Jutao Jiang, Drake Miller, Chintamani Palsule, Leonard Forbes
  • Patent number: 9666636
    Abstract: Backside illuminated photosensitive devices and associated methods are provided. In one aspect, for example, a backside-illuminated photosensitive imager device can include a semiconductor substrate having multiple doped regions forming a least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation where the textured region includes surface features sized and positioned to facilitate tuning to a preselected wavelength of light, and a dielectric region positioned between the textured region and the at least one junction. The dielectric region is positioned to isolate the at least one junction from the textured region, and the semiconductor substrate and the textured region are positioned such that incoming electromagnetic radiation passes through the semiconductor substrate before contacting the textured region.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: May 30, 2017
    Assignee: SiOnyx, LLC
    Inventors: Homayoon Haddad, Jeffrey McKee, Jutao Jiang, Drake Miller, Chintamani Palsule, Leonard Forbes
  • Publication number: 20170025467
    Abstract: Backside illuminated photosensitive devices and associated methods are provided. In one aspect, for example, a backside-illuminated photosensitive imager device can include a semiconductor substrate having multiple doped regions forming a least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation where the textured region includes surface features sized and positioned to facilitate tuning to a preselected wavelength of light, and a dielectric region positioned between the textured region and the at least one junction. The dielectric region is positioned to isolate the at least one junction from the textured region, and the semiconductor substrate and the textured region are positioned such that incoming electromagnetic radiation passes through the semiconductor substrate before contacting the textured region.
    Type: Application
    Filed: October 6, 2016
    Publication date: January 26, 2017
    Inventors: Homayoon Haddad, Jeffrey McKee, Jutao Jiang, Drake Miller, Chintamani Palsule, Leonard Forbes
  • Patent number: 9496308
    Abstract: Backside illuminated photosensitive devices and associated methods are provided. In one aspect, for example, a backside-illuminated photosensitive imager device can include a semiconductor substrate having multiple doped regions forming a least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation where the textured region includes surface features sized and positioned to facilitate tuning to a preselected wavelength of light, and a dielectric region positioned between the textured region and the at least one junction. The dielectric region is positioned to isolate the at least one junction from the textured region, and the semiconductor substrate and the textured region are positioned such that incoming electromagnetic radiation passes through the semiconductor substrate before contacting the textured region.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: November 15, 2016
    Assignee: SiOnyx, LLC
    Inventors: Homayoon Haddad, Jeffrey McKee, Jutao Jiang, Drake Miller, Chintamani Palsule, Leonard Forbes
  • Publication number: 20160329366
    Abstract: Light trapping pixels, devices incorporating such pixels, and various associated methods are provided. In one aspect, for example, a light trapping pixel device can include a light sensitive pixel having a light incident surface, a backside surface opposite the light incident surface, and a peripheral sidewall disposed into at least a portion of the pixel and extending at least substantially around the pixel periphery. The pixel can also include a backside light trapping material substantially covering the backside surface and a peripheral light trapping material substantially covering the peripheral sidewall. The light contacting the backside light trapping material or the peripheral light trapping material is thus reflected back toward the pixel.
    Type: Application
    Filed: July 21, 2016
    Publication date: November 10, 2016
    Inventors: Martin U. Pralle, Jeffrey McKee, Jason Sickler
  • Publication number: 20150372040
    Abstract: Light trapping pixels, devices incorporating such pixels, and various associated methods are provided. In one aspect, for example, a light trapping pixel device can include a light sensitive pixel having a light incident surface, a backside surface opposite the light incident surface, and a peripheral sidewall disposed into at least a portion of the pixel and extending at least substantially around the pixel periphery. The pixel can also include a backside light trapping material substantially covering the backside surface and a peripheral light trapping material substantially covering the peripheral sidewall. The light contacting the backside light trapping material or the peripheral light trapping material is thus reflected back toward the pixel.
    Type: Application
    Filed: June 23, 2015
    Publication date: December 24, 2015
    Applicant: SiOnyx, Inc.
    Inventors: Martin U. Pralle, Jeffrey McKee, Jason Sickler
  • Publication number: 20150270306
    Abstract: Photosensitive devices and associated methods are provided. In one aspect, for example, a photosensitive imager device can include a semiconductor substrate having multiple doped regions forming at least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation, and an electrical transfer element coupled to the semiconductor substrate and operable to transfer an electrical signal from the at least one junction. In one aspect, the textured region is operable to facilitate generation of an electrical signal from the detection of infrared electromagnetic radiation. In another aspect, interacting with electromagnetic radiation further includes increasing the semiconductor substrate's effective absorption wavelength as compared to a semiconductor substrate lacking a textured region.
    Type: Application
    Filed: March 24, 2014
    Publication date: September 24, 2015
    Applicant: SiOnyx, Inc.
    Inventors: Homayoon Haddad, Jutao Jiang, Jeffrey McKee, Drake Miller, Leonard Forbes, Chintamani Palsule
  • Patent number: 9064764
    Abstract: Light trapping pixels, devices incorporating such pixels, and various associated methods are provided. In one aspect, for example, a light trapping pixel device can include a light sensitive pixel having a light incident surface, a backside surface opposite the light incident surface, and a peripheral sidewall disposed into at least a portion of the pixel and extending at least substantially around the pixel periphery. The pixel can also include a backside light trapping material substantially covering the backside surface and a peripheral light trapping material substantially covering the peripheral sidewall. The light contacting the backside light trapping material or the peripheral light trapping material is thus reflected back toward the pixel.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 23, 2015
    Assignee: SiOnyx, Inc.
    Inventors: Martin U. Pralle, Jeffrey McKee, Jason Sickler
  • Publication number: 20140332665
    Abstract: A monolithic sensor for detecting infrared and visible light according to an example includes a semiconductor substrate and a semiconductor layer coupled to the semiconductor substrate. The semiconductor layer includes a device surface opposite the semiconductor substrate. A visible light photodiode is formed at the device surface. An infrared photodiode is also formed at the device surface and in proximity to the visible light photodiode. A textured region is coupled to the infrared photodiode and positioned to interact with electromagnetic radiation.
    Type: Application
    Filed: April 4, 2014
    Publication date: November 13, 2014
    Applicant: SiOnyx, Inc.
    Inventors: Jutao Jiang, Jeffrey McKee, Martin U. Pralle
  • Publication number: 20140197509
    Abstract: Backside illuminated photosensitive devices and associated methods are provided. In one aspect, for example, a backside-illuminated photosensitive imager device can include a semiconductor substrate having multiple doped regions forming a least one junction, a textured region coupled to the semiconductor substrate and positioned to interact with electromagnetic radiation, and a passivation region positioned between the textured region and the at least one junction. The passivation region is positioned to isolate the at least one junction from the textured region, and the semiconductor substrate and the textured region are positioned such that incoming electromagnetic radiation passes through the semiconductor substrate before contacting the textured region. Additionally, the device includes an electrical transfer element coupled to the semiconductor substrate to transfer an electrical signal from the at least one junction.
    Type: Application
    Filed: February 19, 2013
    Publication date: July 17, 2014
    Applicant: SiOnyx, Inc.
    Inventors: Homayoon Haddad, Jeffrey McKee, Jutao Jiang, Drake Miller, Chintamani Palsule, Leonard Forbes
  • Patent number: 8723094
    Abstract: Transistor pixel devices, imagers, and associated methods are provided. In one aspect, a transistor pixel device includes a photodiode coupled to a floating diffusion region (FD), a storage node (SN), and a power supply, wherein the FD is coupled between the photodiode and the power supply. The device also includes a first global transfer transistor coupled between the photodiode and the FD for gating between the photodiode and the FD and a second global transfer transistor coupled between the FD and the SN for gating between the FD and the SN. A global reset select transistor is coupled between the FD and the power supply, wherein an open state of the global reset select transistor prevents accumulation of electrical charge at the photodiodes. A source follower transistor is coupled to the FD and to the power supply, where the source follower is operable to receive electrical signal from the FD.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: May 13, 2014
    Assignee: Sionyx, Inc.
    Inventors: Jeffrey McKee, Jutao Jiang