Patents by Inventor Jeffrey A. Ridley
Jeffrey A. Ridley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8644836Abstract: Routing an incoming call for an IP phone system is disclosed. A location data for a mobile device is received. A way point based at least in part on the location data is determined. A state for a user of the IP phone system is determined based at least in part on the way point. An incoming call is routed to the IP phone system based at least in part on the state.Type: GrantFiled: August 3, 2007Date of Patent: February 4, 2014Assignee: ShoreTel, Inc.Inventors: Jeffrey Ridley, Pascal Crausaz, Edwin Basart
-
Patent number: 8188561Abstract: An integrated vacuum package having an added volume on a perimeter within the perimeter of a bonding seal between two wafers. The added volume of space may be an etching of material from the inside surface of the top wafer. This wafer may have vent holes that may be sealed to maintain a vacuum within the volume between the two wafers after the pump out of gas and air. The inside surface of the top wafer may have an anti-reflective pattern. Also, an anti-reflective pattern may be on the outside surface of the top wafer. The seal between the two wafers may be ring-like and have a spacer material. Also, it may have a malleable material such as solder to compensate for any flatness variation between the two facing surfaces of the wafers.Type: GrantFiled: December 1, 2010Date of Patent: May 29, 2012Assignee: Honeywell International Inc.Inventors: Robert E. Higashi, Karen M. Newstrom-Peitso, Jeffrey A. Ridley
-
Publication number: 20110070401Abstract: An integrated vacuum package having an added volume on a perimeter within the perimeter of a bonding seal between two wafers. The added volume of space may be an etching of material from the inside surface of the top wafer. This wafer may have vent holes that may be sealed to maintain a vacuum within the volume between the two wafers after the pump out of gas and air. The inside surface of the top wafer may have an anti-reflective pattern. Also, an anti-reflective pattern may be on the outside surface of the top wafer. The seal between the two wafers may be ring-like and have a spacer material. Also, it may have a malleable material such as solder to compensate for any flatness variation between the two facing surfaces of the wafers.Type: ApplicationFiled: December 1, 2010Publication date: March 24, 2011Applicant: HONEYWELL INTERNATIONAL INC.Inventors: Robert E. Higashi, Karen M. Newstrom-Peitso, Jeffrey A. Ridley
-
Patent number: 7875944Abstract: An integrated vacuum package having an added volume on a perimeter within the perimeter of a bonding seal between two wafers. The added volume of space may be an etching of material from the inside surface of the top wafer. This wafer may have vent holes that may be sealed to maintain a vacuum within the volume between the two wafers after the pump out of gas and air. The inside surface of the top wafer may have an anti-reflective pattern. Also, an anti-reflective pattern may be on the outside surface of the top wafer. The seal between the two wafers may be ring-like and have a spacer material. Also, it may have a malleable material such as solder to compensate for any flatness variation between the two facing surfaces of the wafers.Type: GrantFiled: August 1, 2007Date of Patent: January 25, 2011Assignee: Honeywell International Inc.Inventors: Robert E. Higashi, Karen M. Newstrom-Peitso, Jeffrey A. Ridley
-
Publication number: 20090247188Abstract: Routing an incoming call for an IP phone system is disclosed. A location data for a mobile device is received. A way point based at least in part on the location data is determined. A state for a user of the IP phone system is determined based at least in part on the way point. An incoming call is routed to the IP phone system based at least in part on the state.Type: ApplicationFiled: August 3, 2007Publication date: October 1, 2009Inventors: Jeffrey Ridley, Pascal Crausaz, Edwin Basart
-
Patent number: 7549206Abstract: A flow sensor system and a method for fabricating the same. A substrate is provided, comprising a detector wafer upon which a flow sensor is formed. One or more shells can then be configured upon the substrate whose walls form a flow channel. The flow channel is fabricated directly upon the substrate in a manner that allows the flow channel to couple heat transfer directly to the flow sensor in order to eliminate the need for two or more different types of sacrificial layers during the fabrication of the flow sensor upon the substrate and in which the shell(s) is coupled with fluidic measurement to provide for the flow sensor.Type: GrantFiled: August 13, 2007Date of Patent: June 23, 2009Assignee: Honeywell International Inc.Inventors: Robert E. Higashi, Son T. Lu, Jeffrey A. Ridley
-
Publication number: 20090044620Abstract: A flow sensor system and a method for fabricating the same. A substrate is provided, comprising a detector wafer upon which a flow sensor is formed. One or more shells can then be configured upon the substrate whose walls form a flow channel. The flow channel is fabricated directly upon the substrate in a manner that allows the flow channel to couple heat transfer directly to the flow sensor in order to eliminate the need for two or more different types of sacrificial layers during the fabrication of the flow sensor upon the substrate and in which the shell(s) is coupled with fluidic measurement to provide for the flow sensor.Type: ApplicationFiled: August 13, 2007Publication date: February 19, 2009Inventors: Robert E. Higashi, Son T. Lu, Jeffrey A. Ridley
-
Patent number: 7396476Abstract: Methods of fabricating comb drive devices utilizing one or more sacrificial etch-buffers are disclosed. An illustrative fabrication method may include the steps of etching a pattern onto a wafer substrate defining one or more comb drive elements and sacrificial etch-buffers, liberating and removing one or more sacrificial etch-buffers prior to wafer bonding, bonding the etched wafer substrate to an underlying support substrate, and etching away the wafer substrate. In some embodiments, the sacrificial etch-buffers are removed after bonding the wafer to the support substrate. The sacrificial etch-buffers can be provided at one or more selective regions to provide greater uniformity in etch rate during etching. A comb drive device in accordance with an illustrative embodiment can include a number of interdigitated comb fingers each having a more uniform profile along their length and/or at their ends, producing less harmonic distortion during operation.Type: GrantFiled: January 17, 2006Date of Patent: July 8, 2008Assignee: Honeywell International Inc.Inventors: Jeffrey A. Ridley, James A. Neus
-
Patent number: 7396698Abstract: A method for fabricating a MEMS device having a top cap and an upper sense plate is described. The method includes producing a device wafer including an etched substrate, etched MEMS device components, and interconnect metal, a portion of the interconnect metal being bond pads and adding a metal wraparound layer to a back side, edges, and a portion of a front side of the device wafer. The method also includes producing an upper wafer including an etched substrate and interconnect metal, bonding the device wafer and the upper wafer, and dicing the bonded upper wafer and device wafer into individual MEMS devices.Type: GrantFiled: December 30, 2005Date of Patent: July 8, 2008Assignee: Honeywell International Inc.Inventors: Robert D. Horning, Jeffrey A. Ridley
-
Publication number: 20080017944Abstract: An integrated vacuum package having an added volume on a perimeter within the perimeter of a bonding seal between two wafers. The added volume of space may be an etching of material from the inside surface of the top wafer. This wafer may have vent holes that may be sealed to maintain a vacuum within the volume between the two wafers after the pump out of gas and air. The inside surface of the top wafer may have an anti-reflective pattern. Also, an anti-reflective pattern may be on the outside surface of the top wafer. The seal between the two wafers may be ring-like and have a spacer material. Also, it may have a malleable material such as solder to compensate for any flatness variation between the two facing surfaces of the wafers.Type: ApplicationFiled: August 1, 2007Publication date: January 24, 2008Applicant: HONEYWELL INTERNATIONAL INC.Inventors: Robert Higashi, Karen Newstrom-Peitso, Jeffrey Ridley
-
Patent number: 7276798Abstract: An integrated vacuum package having an added volume on a perimeter within the perimeter of a bonding seal between two wafers. The added volume of space may be an etching of material from the inside surface of the top wafer. This wafer may have vent holes that may be sealed to maintain a vacuum within the volume between the two wafers after the pump out of gas and air. The inside surface of the top wafer may have an anti-reflective pattern. Also, an anti-reflective pattern may be on the outside surface of the top wafer. The seal between the two wafers may be ring-like and have a spacer material. Also, it may have a malleable material such as solder to compensate for any flatness variation between the two facing surfaces of the wafers.Type: GrantFiled: December 29, 2003Date of Patent: October 2, 2007Assignee: Honeywell International Inc.Inventors: Robert E. Higashi, Karen M. Newstrom-Peitso, Jeffrey A. Ridley
-
Publication number: 20060113644Abstract: Methods of fabricating comb drive devices utilizing one or more sacrificial etch-buffers are disclosed. An illustrative fabrication method may include the steps of etching a pattern onto a wafer substrate defining one or more comb drive elements and sacrificial etch-buffers, liberating and removing one or more sacrificial etch-buffers prior to wafer bonding, bonding the etched wafer substrate to an underlying support substrate, and etching away the wafer substrate. In some embodiments, the sacrificial etch-buffers are removed after bonding the wafer to the support substrate. The sacrificial etch-buffers can be provided at one or more selective regions to provide greater uniformity in etch rate during etching. A comb drive device in accordance with an illustrative embodiment can include a number of interdigitated comb fingers each having a more uniform profile along their length and/or at their ends, producing less harmonic distortion during operation.Type: ApplicationFiled: January 17, 2006Publication date: June 1, 2006Inventors: Jeffrey Ridley, James Neus
-
Publication number: 20060110854Abstract: A method for fabricating a MEMS device having a top cap and an upper sense plate is described. The method includes producing a device wafer including an etched substrate, etched MEMS device components, and interconnect metal, a portion of the interconnect metal being bond pads and adding a metal wraparound layer to a back side, edges, and a portion of a front side of the device wafer. The method also includes producing an upper wafer including an etched substrate and interconnect metal, bonding the device wafer and the upper wafer, and dicing the bonded upper wafer and device wafer into individual MEMS devices.Type: ApplicationFiled: December 30, 2005Publication date: May 25, 2006Inventors: Robert Horning, Jeffrey Ridley
-
Patent number: 7012322Abstract: Methods of fabricating comb drive devices utilizing one or more sacrificial etch-buffers are disclosed. An illustrative fabrication method may include the steps of etching a pattern onto a wafer substrate defining one or more comb drive elements and sacrificial etch-buffers, liberating and removing one or more sacrificial etch-buffers prior to wafer bonding, bonding the etched wafer substrate to an underlying support substrate, and etching away the wafer substrate. In some embodiments, the sacrificial etch-buffers are removed after bonding the wafer to the support substrate. The sacrificial etch-buffers can be provided at one or more selective regions to provide greater uniformity in etch rate during etching. A comb drive device in accordance with an illustrative embodiment can include a number of interdigitated comb fingers each having a more uniform profile along their length and/or at their ends, producing less harmonic distortion during operation.Type: GrantFiled: December 22, 2003Date of Patent: March 14, 2006Assignee: Honeywell International Inc.Inventors: Jeffrey A. Ridley, James A. Neus
-
Patent number: 7005732Abstract: A method for fabricating a MEMS device having a top cap and an upper sense plate is described. The method includes producing a device wafer including an etched substrate, etched MEMS device components, and interconnect metal, a portion of the interconnect metal being bond pads and adding a metal wraparound layer to a back side, edges, and a portion of a front side of the device wafer. The method also includes producing an upper wafer including an etched substrate and interconnect metal, bonding the device wafer and the upper wafer, and dicing the bonded upper wafer and device wafer into individual MEMS devices.Type: GrantFiled: October 21, 2003Date of Patent: February 28, 2006Assignee: Honeywell International Inc.Inventors: Robert D. Horning, Jeffrey A. Ridley
-
Patent number: 6924165Abstract: A method for providing conductive paths into a hermetically sealed cavity is described. The sealed cavity is formed utilizing a silicon-glass micro-electromechanical structure (MEMS) process and the method includes forming recesses on a glass substrate everywhere that a conductive path is to pass into the cavity, and forming conductive leads in and around the recesses. A glass layer is deposited over the substrate, into the recesses, and over the conductive leads and then planarized to expose portions of the conductive leads. A sealing surface is formed on at least a portion of the glass layer. Silicon is then bonded to the sealing surface of the planarized glass layer, the wafer being configured such that a portion of each lead is within the sealed cavity and a portion of each lead is outside the sealed cavity.Type: GrantFiled: July 14, 2004Date of Patent: August 2, 2005Assignee: Honeywell International Inc.Inventors: Robert D. Horning, Jeffrey A. Ridley
-
Publication number: 20050136621Abstract: Methods of fabricating comb drive devices utilizing one or more sacrificial etch-buffers are disclosed. An illustrative fabrication method may include the steps of etching a pattern onto a wafer substrate defining one or more comb drive elements and sacrificial etch-buffers, liberating and removing one or more sacrificial etch-buffers prior to wafer bonding, bonding the etched wafer substrate to an underlying support substrate, and etching away the wafer substrate. In some embodiments, the sacrificial etch-buffers are removed after bonding the wafer to the support substrate. The sacrificial etch-buffers can be provided at one or more selective regions to provide greater uniformity in etch rate during etching. A comb drive device in accordance with an illustrative embodiment can include a number of interdigitated comb fingers each having a more uniform profile along their length and/or at their ends, producing less harmonic distortion during operation.Type: ApplicationFiled: December 22, 2003Publication date: June 23, 2005Inventors: Jeffrey Ridley, James Neus
-
Patent number: 6888233Abstract: A method for providing conductive paths into a hermetically sealed cavity is described. The sealed cavity is formed utilizing a silicon-glass micro-electromechanical structure (MEMS) process and the method includes forming recesses on a glass substrate everywhere that a conductive path is to pass into the cavity, and forming conductive leads in and around the recesses. A glass layer is deposited over the substrate, into the recesses, and over the conductive leads and then planarized to expose portions of the conductive leads. A sealing surface is formed on at least a portion of the glass layer. Silicon is then bonded to the sealing surface of the planarized glass layer, the wafer being configured such that a portion of each lead is within the sealed cavity and a portion of each lead is outside the sealed cavity.Type: GrantFiled: March 10, 2003Date of Patent: May 3, 2005Assignee: Honeywell International Inc.Inventors: Robert D. Horning, Jeffrey A. Ridley
-
Publication number: 20050084998Abstract: A method for fabricating a MEMS device having a top cap and an upper sense plate is described. The method includes producing a device wafer including an etched substrate, etched MEMS device components, and interconnect metal, a portion of the interconnect metal being bond pads and adding a metal wraparound layer to a back side, edges, and a portion of a front side of the device wafer. The method also includes producing an upper wafer including an etched substrate and interconnect metal, bonding the device wafer and the upper wafer, and dicing the bonded upper wafer and device wafer into individual MEMS devices.Type: ApplicationFiled: October 21, 2003Publication date: April 21, 2005Inventors: Robert Horning, Jeffrey Ridley
-
Patent number: RE39143Abstract: A method for fabricating a wafer-pair having at least one recess in one wafer and the recess formed into a chamber with the attaching of the other wafer which has a port plugged with a deposited layer on its external surface. The deposition of the layer may be performed in a very low pressure environment, thus assuring the same kind of environment in the sealed chamber. The chamber may enclose at least one device such as a thermoelectric sensor, bolometer, emitter or other kind of device. The wafer-pair typically will have numerous chambers, with devices, respectively, and may be divided into a multiplicity of chips.Type: GrantFiled: December 3, 2001Date of Patent: June 27, 2006Assignee: Honeywell International Inc.Inventors: R. Andrew Wood, Jeffrey A. Ridley, Robert E. Higashi