Patents by Inventor Jeffrey B. Shealy

Jeffrey B. Shealy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190312027
    Abstract: A method of manufacture and structure for a monolithic single chip single crystal device. The method can include forming a first single crystal epitaxial layer overlying the substrate and forming one or more second single crystal epitaxial layers overlying the first single crystal epitaxial layer. The first single crystal epitaxial layer and the one or more second single crystal epitaxial layers can be processed to form one or more active or passive device components. Through this process, the resulting device includes a monolithic epitaxial stack integrating multiple circuit functions.
    Type: Application
    Filed: January 12, 2017
    Publication date: October 10, 2019
    Inventors: Shawn R. GIBB, David AICHELE, Ramakrishna VETURY, Mark D. BOOMGARDEN, Jeffrey B. SHEALY
  • Publication number: 20190305753
    Abstract: A method and structure for an essentially single crystal acoustic electronic device. The device includes a substrate having an enhancement layer formed overlying its surface region and an air cavity formed through a portion of the substrate. An essentially single crystal piezoelectric material is formed overlying the air cavity and a portion of the enhancement layer. Also, a first electrode material coupled to the backside surface region of the crystal piezoelectric material and spatially configured within the cavity. A second electrode material is formed overlying the topside of the piezoelectric material, and a dielectric layer formed overlying the second electrode material. Further, one or more shunt layers can be formed around the perimeter of a resonator region of the device to connect the piezoelectric material to the enhancement layer.
    Type: Application
    Filed: June 20, 2019
    Publication date: October 3, 2019
    Inventor: Jeffrey B. SHEALY
  • Patent number: 10431580
    Abstract: A method of manufacture and structure for a monolithic single chip single crystal device. The method can include forming a first single crystal epitaxial layer overlying the substrate and forming one or more second single crystal epitaxial layers overlying the first single crystal epitaxial layer. The first single crystal epitaxial layer and the one or more second single crystal epitaxial layers can be processed to form one or more active or passive device components. Through this process, the resulting device includes a monolithic epitaxial stack integrating multiple circuit functions.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: October 1, 2019
    Assignee: Akoustis, Inc.
    Inventors: Shawn R. Gibb, David Aichele, Ramakrishna Vetury, Mark D. Boomgarden, Jeffrey B. Shealy
  • Patent number: 10431490
    Abstract: A method of wafer scale packaging acoustic resonator devices and an apparatus therefor. The method including providing a partially completed semiconductor substrate comprising a plurality of single crystal acoustic resonator devices, each having a first electrode member, a second electrode member, and an overlying passivation material. At least one of the devices to be configured with an external connection, a repassivation material overlying the passivation material, an under metal material overlying the repassivation material. Copper pillar interconnect structures are then configured overlying the electrode members, and solder bump structures are form overlying the copper pillar interconnect structures.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: October 1, 2019
    Assignee: Akoustis, Inc.
    Inventor: Jeffrey B. Shealy
  • Publication number: 20190288182
    Abstract: A single crystal acoustic electronic device. The device has a substrate having a surface region. The device has a first electrode material coupled to a portion of the substrate and a single crystal capacitor dielectric material having a thickness of greater than 0.4 microns and overlying an exposed portion of the surface region and coupled to the first electrode material. In an example, the single crystal capacitor dielectric material is characterized by a dislocation density of less than 1012 defects/cm2. A second electrode material is overlying the single crystal capacitor dielectric material.
    Type: Application
    Filed: April 25, 2019
    Publication date: September 19, 2019
    Inventor: Jeffrey B. SHEALY
  • Publication number: 20190288658
    Abstract: A method and structure for a transfer process for an acoustic resonator device. In an example, a bulk acoustic wave resonator (BAWR) with an air reflection cavity is formed. A piezoelectric thin film is grown on a crystalline substrate. A first patterned electrode is deposited on the surface of the piezoelectric film. An etched sacrificial layer is deposited over the first electrode and a planarized support layer is deposited over the sacrificial layer, which is then bonded to a substrate wafer. The crystalline substrate is removed and a second patterned electrode is deposited over a second surface of the film. The sacrificial layer is etched to release the air reflection cavity. Also, a cavity can instead be etched into the support layer prior to bonding with the substrate wafer. Alternatively, a reflector structure can be deposited on the first electrode, replacing the cavity.
    Type: Application
    Filed: June 6, 2019
    Publication date: September 19, 2019
    Inventors: Dae Ho KIM, Mary WINTERS, Ramakrishna VETURY, Jeffrey B. SHEALY
  • Publication number: 20190259934
    Abstract: A method of manufacture and resulting structure for a single crystal electronic device with an enhanced strain interface region. The method of manufacture can include forming a nucleation layer overlying a substrate and forming a first and second single crystal layer overlying the nucleation layer. This first and second layers can be doped by introducing one or more impurity species to form a strained single crystal layers. The first and second strained layers can be aligned along the same crystallographic direction to form a strained single crystal bi-layer having an enhanced strain interface region. Using this enhanced single crystal bi-layer to form active or passive devices results in improved physical characteristics, such as enhanced photon velocity or improved density charges.
    Type: Application
    Filed: February 20, 2018
    Publication date: August 22, 2019
    Inventors: Shawn R. GIBB, Steven DENBAARS, Jeffrey B. SHEALY
  • Publication number: 20190253038
    Abstract: An RF triplexer circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: Rohan W. HOULDEN, David M. AICHELE, Jeffrey B. SHEALY
  • Patent number: 10355659
    Abstract: A method and structure for a transfer process for an acoustic resonator device. In an example, a bulk acoustic wave resonator (BAWR) with an air reflection cavity is formed. A piezoelectric thin film is grown on a crystalline substrate. A first patterned electrode is deposited on the surface of the piezoelectric film. An etched sacrificial layer is deposited over the first electrode and a planarized support layer is deposited over the sacrificial layer, which is then bonded to a substrate wafer. The crystalline substrate is removed and a second patterned electrode is deposited over a second surface of the film. The sacrificial layer is etched to release the air reflection cavity. Also, a cavity can instead be etched into the support layer prior to bonding with the substrate wafer. Alternatively, a reflector structure can be deposited on the first electrode, replacing the cavity.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: July 16, 2019
    Assignee: Akoustis, Inc.
    Inventors: Dae Ho Kim, Mary Winters, Ramakrishna Vetury, Jeffrey B. Shealy
  • Publication number: 20190199316
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Application
    Filed: March 1, 2019
    Publication date: June 27, 2019
    Inventors: Rohan W. HOULDEN, Jeffrey B. SHEALY, David M. AICHELE
  • Publication number: 20190190479
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Application
    Filed: February 14, 2019
    Publication date: June 20, 2019
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Publication number: 20190181831
    Abstract: A communication system using a single crystal acoustic resonator device. The device includes a piezoelectric substrate with a piezoelectric layer formed overlying a transfer substrate. A topside metal electrode is formed overlying the substrate. A topside micro-trench is formed within the piezoelectric layer. A topside metal with a topside metal plug is formed within the topside micro-trench. First and second backside cavities are formed within the transfer substrate under the topside metal electrode. A backside metal electrode is formed under the transfer substrate, within the first backside cavity, and under the topside metal electrode. A backside metal plug is formed under the transfer substrate, within the second backside cavity, and under the topside micro-trench. The backside metal plug is connected to the topside metal plug and the backside metal electrode. The topside micro-trench, the topside metal plug, the second backside cavity, and the backside metal plug form a micro-via.
    Type: Application
    Filed: February 21, 2019
    Publication date: June 13, 2019
    Inventors: Shawn R. Gibb, Ramakrishna Vetury, Jeffrey B. Shealy, Mark D. Boomgarden, Michael P. Lewis, Alexander Y. Feldman
  • Patent number: 10319898
    Abstract: A single crystal acoustic electronic device. The device has a substrate having a surface region. The device has a first electrode material coupled to a portion of the substrate and a single crystal capacitor dielectric material having a thickness of greater than 0.4 microns and overlying an exposed portion of the surface region and coupled to the first electrode material. In an example, the single crystal capacitor dielectric material is characterized by a dislocation density of less than 1012 defects/cm2. A second electrode material is overlying the single crystal capacitor dielectric material.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: June 11, 2019
    Assignee: AKOUSTIS, INC.
    Inventor: Jeffrey B. Shealy
  • Publication number: 20190158058
    Abstract: A method of fabricating a configurable single crystal acoustic resonator (SCAR) device integrated circuit. The method includes providing a bulk substrate structure having first and second recessed regions with a support member disposed in between. A thickness of single crystal piezo material is formed overlying the bulk substrate with an exposed backside region configured with the first recessed region and a contact region configured with the second recessed region. A first electrode with a first terminal is formed overlying an upper portion of the piezo material, while a second electrode with a second terminal is formed overlying a lower portion of the piezo material. An acoustic reflector structure and a dielectric layer are formed overlying the resulting bulk structure. The resulting device includes a plurality of single crystal acoustic resonator devices, numbered from (R1) to (RN), where N is an integer greater than 1.
    Type: Application
    Filed: January 4, 2019
    Publication date: May 23, 2019
    Inventor: Jeffrey B. SHEALY
  • Publication number: 20190148621
    Abstract: A method of manufacture for an acoustic resonator device. The method can include forming a topside metal electrode overlying a piezoelectric substrate with a piezoelectric layer and a seed substrate. A topside micro-trench can be formed within the piezoelectric layer and a topside metal can be formed overlying the topside micro-trench. This topside metal can include a topside metal plug formed within the topside micro-trench. A first backside trench can be formed underlying the topside metal electrode, and a second backside trench can be formed underlying the topside micro-trench. A backside metal electrode can be formed within the first backside trench, while a backside metal plug can be formed within the second backside trench and electrically coupled to the topside metal plug and the backside metal electrode. The topside micro-trench, the topside metal plug, the second backside trench, and the backside metal plug form a micro-via.
    Type: Application
    Filed: January 10, 2019
    Publication date: May 16, 2019
    Inventors: Alexander Y. FELDMAN, Mark D. BOOMGARDEN, Michael P. LEWIS, Jeffrey B. SHEALY, Ramakrishna VETURY
  • Patent number: 10256786
    Abstract: A communication system using a single crystal acoustic resonator device. The device includes a piezoelectric substrate with a piezoelectric layer formed overlying a thinned seed substrate. A topside metal electrode is formed overlying the substrate. A topside micro-trench is formed within the piezoelectric layer. A topside metal with a topside metal plug is formed within the topside micro-trench. First and second backside trenches are formed within the seed substrate under the topside metal electrode. A backside metal electrode is formed under the seed substrate, within the first backside trench, and under the topside metal electrode. A backside metal plug is formed under the seed substrate, within the second backside trench, and under the topside micro-trench. The backside metal plug is connected to the topside metal plug and the backside metal electrode. The topside micro-trench, the topside metal plug, the second backside trench, and the backside metal plug form a micro-via.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: April 9, 2019
    Assignee: Akoustis, Inc.
    Inventors: Shawn R. Gibb, Ramakrishna Vetury, Jeffrey B. Shealy, Mark D. Boomgarden, Michael P. Lewis, Alexander Y. Feldman
  • Publication number: 20190081611
    Abstract: A system for a wireless communication infrastructure using single crystal devices. The wireless system can include a controller coupled to a power source, a signal processing module, and a plurality of transceiver modules. Each of the transceiver modules includes a transmit module configured on a transmit path and a receive module configured on a receive path. The transmit modules each include at least a transmit filter having one or more filter devices, while the receive modules each include at least a receive filter. Each of these filter devices includes a single crystal acoustic resonator device with at least a first electrode material, a single crystal material, and a second electrode material. Wireless infrastructures using the present single crystal technology perform better in high power density applications, enable higher out of band rejection (OOBR), and achieve higher linearity as well.
    Type: Application
    Filed: September 11, 2017
    Publication date: March 14, 2019
    Inventors: Ramakrishna VETURY, Shawn R. GIBB, Mark D. BOOMGARDEN, Jeffrey B. SHEALY
  • Publication number: 20190068164
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Application
    Filed: October 30, 2018
    Publication date: February 28, 2019
    Inventors: Rohan W. HOULDEN, Jeffrey B. SHEALY, Shawn R. GIBB, David AICHELE
  • Patent number: 10217930
    Abstract: A method of manufacture for an acoustic resonator device. The method can include forming a topside metal electrode overlying a piezoelectric substrate with a piezoelectric layer and a seed substrate. A topside micro-trench can be formed within the piezoelectric layer and a topside metal can be formed overlying the topside micro-trench. This topside metal can include a topside metal plug formed within the topside micro-trench. A first backside trench can be formed underlying the topside metal electrode, and a second backside trench can be formed underlying the topside micro-trench. A backside metal electrode can be formed within the first backside trench, while a backside metal plug can be formed within the second backside trench and electrically coupled to the topside metal plug and the backside metal electrode. The topside micro-trench, the topside metal plug, the second backside trench, and the backside metal plug form a micro-via.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: February 26, 2019
    Assignee: AKOUSTIS, INC.
    Inventors: Alexander Y. Feldman, Mark D. Boomgarden, Michael P. Lewis, Jeffrey B. Shealy, Ramakrishna Vetury
  • Patent number: 10211804
    Abstract: A method of fabricating a configurable single crystal acoustic resonator (SCAR) device integrated circuit. The method includes providing a bulk substrate structure having first and second recessed regions with a support member disposed in between. A thickness of single crystal piezo material is formed overlying the bulk substrate with an exposed backside region configured with the first recessed region and a contact region configured with the second recessed region. A first electrode with a first terminal is formed overlying an upper portion of the piezo material, while a second electrode with a second terminal is formed overlying a lower portion of the piezo material. An acoustic reflector structure and a dielectric layer are formed overlying the resulting bulk structure. The resulting device includes a plurality of single crystal acoustic resonator devices, numbered from (R1) to (RN), where N is an integer greater than 1.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: February 19, 2019
    Assignee: AKOUSTIS, INC.
    Inventor: Jeffrey B. Shealy