Patents by Inventor Jeffrey B. Shealy

Jeffrey B. Shealy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11652469
    Abstract: An acoustic resonator device and method thereof. The device includes a substrate member having an air cavity region. A piezoelectric layer is coupled to and configured overlying the substrate member and the air cavity region. The piezoelectric layer is configured to be characterized by an x-ray rocking curve Full Width at Half Maximum (FWHM) ranging from 0 degrees to 2 degrees. A top electrode is coupled to and configured overlying the piezoelectric layer, while a bottom electrode coupled to and configured underlying the piezoelectric layer within the air cavity region. The configuration of the materials of the piezoelectric layer and the substrate member to achieve the specific FWHM range improves a power handling capability characteristic and a power durability characteristic.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: May 16, 2023
    Assignee: Akoustis, Inc.
    Inventors: Jeffrey B. Shealy, Shawn R. Gibb, Rohan W. Houlden, Joel M. Morgan
  • Patent number: 11646718
    Abstract: An RF filter system including a plurality of BAW resonators arranged in a circuit, the circuit including a serial configuration of resonators and a parallel shunt configuration of resonators, the circuit having a circuit response corresponding to the serial configuration and the parallel configuration of the plurality of bulk acoustic wave resonators including a transmission loss from a pass band having a bandwidth from 5.855 GHz to 5.925 GHz. Resonators include a support member with a multilayer reflector structure; a first electrode including tungsten; a piezoelectric film including aluminum scandium nitride; a second electrode including tungsten; and a passivation layer including silicon nitride. At least one resonator includes at least a portion of the first electrode located within a cavity region defined by a surface of the support member.
    Type: Grant
    Filed: August 17, 2022
    Date of Patent: May 9, 2023
    Assignee: Akoustis, Inc.
    Inventors: Jeffrey B. Shealy, Michael D. Hodge, Rohan W. Houlden, Shawn R. Gibb, Mary Winters, Ramakrishna Vetury, David M. Aichele
  • Patent number: 11646717
    Abstract: An RF filter system including a plurality of BAW resonators arranged in a circuit, the circuit including a serial configuration of resonators and a parallel shunt configuration of resonators, the circuit having a circuit response corresponding to the serial configuration and the parallel configuration of the plurality of bulk acoustic wave resonators including a transmission loss from a pass band having a bandwidth from 5.170 GHz to 5.330 GHz. Resonators include a support member with a multilayer reflector structure; a first electrode including tungsten; a piezoelectric film including aluminum scandium nitride; a second electrode including tungsten; and a passivation layer including silicon nitride. At least one resonator includes at least a portion of the first electrode located within a cavity region defined by a surface of the support member.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: May 9, 2023
    Assignee: Akoustis, Inc.
    Inventors: Jeffrey B. Shealy, Michael D. Hodge, Rohan W. Houlden, Shawn R. Gibb, Mary Winters, Ramakrishna Vetury, David M. Aichele
  • Patent number: 11646710
    Abstract: A bulk acoustic wave (BAW) resonator includes a solidly mounted reflector, for example, a Bragg-type reflector, a piezoelectric layer, and first and second electrodes on first and second surfaces, respectively, of the piezoelectric layer. A filter device or filter system includes at least one BAW resonator. Related methods of fabrication include forming the BAW resonator.
    Type: Grant
    Filed: July 14, 2022
    Date of Patent: May 9, 2023
    Assignee: Akoustis, Inc.
    Inventors: Dae Ho Kim, Mary Winters, Ramakrishna Vetury, Jeffrey B. Shealy
  • Patent number: 11646719
    Abstract: An RF filter system including a plurality of BAW resonators arranged in a circuit, the circuit including a serial configuration of resonators and a parallel shunt configuration of resonators, the circuit having a circuit response corresponding to the serial configuration and the parallel configuration of the plurality of bulk acoustic wave resonators including a transmission loss from a pass band having a bandwidth from 5.170 GHz to 5.835 GHz. Resonators include a support member with a multilayer reflector structure; a first electrode including tungsten; a piezoelectric film including aluminum scandium nitride; a second electrode including tungsten; and a passivation layer including silicon nitride. At least one resonator includes at least a portion of the first electrode located within a cavity region defined by a surface of the support member.
    Type: Grant
    Filed: August 11, 2022
    Date of Patent: May 9, 2023
    Assignee: AKOUSTIS, INC.
    Inventors: Jeffrey B. Shealy, Michael Hodge, Rohan W. Houlden, Shawn R. Gibb, Mary Winters, Ramakrishna Vetury, David M. Aichele
  • Patent number: 11637545
    Abstract: An RF filter system including a plurality of BAW resonators arranged in a circuit, the circuit including a serial configuration of resonators and a parallel shunt configuration of resonators, the circuit having a circuit response corresponding to the serial configuration and the parallel configuration of the plurality of bulk acoustic wave resonators including a transmission loss from a pass band having a bandwidth from 5.490 GHz to 5.835 GHz. Resonators include a support member with a multilayer reflector structure; a first electrode including tungsten; a piezoelectric film including aluminum scandium nitride; a second electrode including tungsten; and a passivation layer including silicon nitride. At least one resonator includes at least a portion of the first electrode located within a cavity region defined by a surface of the support member.
    Type: Grant
    Filed: August 11, 2022
    Date of Patent: April 25, 2023
    Assignee: AKOUSTIS, INC.
    Inventors: Jeffrey B. Shealy, Michael Hodge, Rohan W. Houlden, Shawn R. Gibb, Mary Winters, Ramakrishna Vetury, David M. Aichele
  • Publication number: 20230123976
    Abstract: A method of manufacture and resulting structure for a single crystal electronic device with an enhanced strain interface region. The method of manufacture can include forming a nucleation layer overlying a substrate and forming a first and second single crystal layer overlying the nucleation layer. These first and second layers can be doped by introducing one or more impurity species to form the strained single crystal layers. The first and second strained layers can be aligned along the same crystallographic direction to form a strained single crystal bi-layer having an enhanced strain interface region. Using this enhanced single crystal bi-layer to form active or passive devices results in improved physical characteristics, such as enhanced photon velocity or improved density charges.
    Type: Application
    Filed: December 14, 2022
    Publication date: April 20, 2023
    Inventors: Shawn R. GIBB, Steven DENBAARS, Jeffrey B. SHEALY
  • Publication number: 20230114606
    Abstract: A system for a wireless communication infrastructure using single crystal devices. The wireless system can include a controller coupled to a power source, a signal processing module, and a plurality of transceiver modules. Each of the transceiver modules includes a transmit module configured on a transmit path and a receive module configured on a receive path. The transmit modules each include at least a transmit filter having one or more filter devices, while the receive modules each include at least a receive filter. Each of these filter devices includes a single crystal acoustic resonator device formed with a thin film transfer process with at least a first electrode material, a single crystal material, and a second electrode material. Wireless infrastructures using the present single crystal technology perform better in high power density applications, enable higher out of band rejection (OOBR), and achieve higher linearity as well.
    Type: Application
    Filed: December 7, 2022
    Publication date: April 13, 2023
    Inventors: Ramakrishna VETURY, Jeffrey B. Shealy
  • Patent number: 11621698
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: April 4, 2023
    Assignee: Akoustis, Inc.
    Inventors: Ya Shen, Rohan W. Houlden, David M. Aichele, Jeffrey B. Shealy
  • Patent number: 11616490
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Grant
    Filed: July 6, 2022
    Date of Patent: March 28, 2023
    Assignee: Akoustis, Inc.
    Inventors: Dae Ho Kim, Mary Winters, Ramakrishna Vetury, Jeffrey B. Shealy, Rohan W. Houlden, David M. Aichele
  • Patent number: 11611386
    Abstract: A front-end module (FEM) for a 6.1 GHz Wi-Fi acoustic wave resonator RF filter circuit. The device can include a power amplifier (PA), a 6.1 GHz resonator, and a diversity switch. The device can further include a low noise amplifier (LNA). The PA is electrically coupled to an input node and can be configured to a DC power detector or an RF power detector. The resonator can be configured between the PA and the diversity switch, or between the diversity switch and an antenna. The LNA may be configured to the diversity switch or be electrically isolated from the switch. Another 6.1 GHZ resonator may be configured between the diversity switch and the LNA. In a specific example, this device integrates a 6.1 GHz PA, a 6.1 GHZ bulk acoustic wave (BAW) RF filter, a single pole two throw (SP2T) switch, and a bypassable LNA into a single device.
    Type: Grant
    Filed: June 15, 2022
    Date of Patent: March 21, 2023
    Assignee: Akoustis, Inc.
    Inventors: Jeffrey B. Shealy, Rohan W. Houlden, David M. Aichele
  • Patent number: 11581306
    Abstract: A method of manufacture and structure for a monolithic single chip single crystal device. The method can include forming a first single crystal epitaxial layer overlying the substrate and forming one or more second single crystal epitaxial layers overlying the first single crystal epitaxial layer. The first single crystal epitaxial layer and the one or more second single crystal epitaxial layers can be processed to form one or more active or passive device components. Through this process, the resulting device includes a monolithic epitaxial stack integrating multiple circuit functions.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: February 14, 2023
    Assignee: Akoustis, Inc.
    Inventors: Shawn R. Gibb, David Aichele, Ramakrishna Vetury, Mark D. Boomgarden, Jeffrey B. Shealy
  • Patent number: 11581866
    Abstract: An RF integrated circuit device can includes a substrate and a High Electron Mobility Transistor (HEMT) device on the substrate including a ScAlN layer configured to provide a buffer layer of the HEMT device to confine formation of a 2DEG channel region of the HEMT device. An RF piezoelectric resonator device can be on the substrate including the ScAlN layer sandwiched between a top electrode and a bottom electrode of the RF piezoelectric resonator device to provide a piezoelectric resonator for the RF piezoelectric resonator device.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: February 14, 2023
    Assignee: Akoustis, Inc.
    Inventors: Jeffrey B. Shealy, Mary Winters, Craig Moe
  • Publication number: 20230034164
    Abstract: A multi-stage matching network filter circuit device. The device comprises bulk acoustic wave (BAW) resonator device having an input node, an output node, and a ground node. A first matching network circuit is coupled to the input node. A second matching network circuit is coupled to the output node. A ground connection network circuit coupled to the ground node. The first or second matching network circuit can include an inductive ladder network including a plurality of series inductors in a series configuration and a plurality of grounded inductors wherein each of the plurality of grounded inductors is coupled to the connection between each connected pair of series inductors. The inductive ladder network can include one or more LC tanks, wherein each of the one or more LC tanks is coupled between a connection between a series inductor and a subsequent series inductor, which is also coupled to a grounded inductor.
    Type: Application
    Filed: October 6, 2022
    Publication date: February 2, 2023
    Inventors: Guillermo Moreno GRANADO, Rohan W. HOULDEN, David M. Aichele, Jeffrey B. SHEALY
  • Publication number: 20230025951
    Abstract: A method of fabricating a configurable single crystal acoustic resonator (SCAR) device integrated circuit. The method includes providing a bulk substrate structure having first and second recessed regions with a support member disposed in between. A thickness of single crystal piezo material is formed overlying the bulk substrate with an exposed backside region configured with the first recessed region and a contact region configured with the second recessed region. A first electrode with a first terminal is formed overlying an upper portion of the piezo material, while a second electrode with a second terminal is formed overlying a lower portion of the piezo material. An acoustic reflector structure and a dielectric layer are formed overlying the resulting bulk structure. The resulting device includes a plurality of single crystal acoustic resonator devices, numbered from (R1) to (RN), where N is an integer greater than 1.
    Type: Application
    Filed: October 5, 2022
    Publication date: January 26, 2023
    Inventor: Jeffrey B. Shealy
  • Publication number: 20230023845
    Abstract: A method of manufacturing an integrated circuit. This method includes forming an epitaxial material comprising single crystal piezo material overlying a surface region of a substrate to a desired thickness and forming a trench region to form an exposed portion of the surface region through a pattern provided in the epitaxial material. Also, the method includes forming a topside landing pad metal and a first electrode member overlying a portion of the epitaxial material and a second electrode member overlying the topside landing pad metal. Furthermore, the method can include processing the backside of the substrate to form a backside trench region exposing a backside of the epitaxial material and the landing pad metal and forming a backside resonator metal material overlying the backside of the epitaxial material to couple to the second electrode member overlying the topside landing pad metal.
    Type: Application
    Filed: October 5, 2022
    Publication date: January 26, 2023
    Inventor: Jeffrey B. SHEALY
  • Patent number: 11563412
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: January 24, 2023
    Assignee: Akoustis, Inc.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Patent number: 11557716
    Abstract: A method of manufacture and resulting structure for a single crystal electronic device with an enhanced strain interface region. The method of manufacture can include forming a nucleation layer overlying a substrate and forming a first and second single crystal layer overlying the nucleation layer. This first and second layers can be doped by introducing one or more impurity species to form a strained single crystal layers. The first and second strained layers can be aligned along the same crystallographic direction to form a strained single crystal bi-layer having an enhanced strain interface region. Using this enhanced single crystal bi-layer to form active or passive devices results in improved physical characteristics, such as enhanced photon velocity or improved density charges.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: January 17, 2023
    Assignee: Akoustis, Inc.
    Inventors: Shawn R. Gibb, Steven Denbaars, Jeffrey B. Shealy
  • Patent number: 11558023
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: January 17, 2023
    Assignee: Akoustis, Inc.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Dae Ho Kim, Mary Winters, Jeffrey B. Shealy
  • Publication number: 20230006631
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Application
    Filed: September 14, 2022
    Publication date: January 5, 2023
    Inventors: Rohan W. HOULDEN, Ya SHEN, David M. AICHELE, Jeffrey B. SHEALY