Patents by Inventor Jeffrey Brede

Jeffrey Brede has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8576693
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a transmitter configured to modulate symbols onto at least one of a plurality of the spectrally overlapping carrier signals; a processor coupled to the transmitter, wherein the processor outputs data for transmission by the transmitter, wherein the processor applies an inverse Fourier transform to the data transmitted by the transmitter; the processor modulating a first carrier of the plurality of spectrally overlapping carrier signals based on a first modulation scheme while modulating a second carrier of the plurality of spectrally overlapping carrier signals based on a second modulation scheme.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: November 5, 2013
    Assignee: HTC Corporation
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lee Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Patent number: 8547824
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a transmitter configured to modulate symbols onto at least one of a plurality of the spectrally overlapping carrier signals; a processor coupled to the transmitter, wherein the processor outputs data for transmission by the transmitter, wherein the processor applies an inverse Fourier transform to the data transmitted by the transmitter; the processor modulating a first carrier of the plurality of spectrally overlapping carrier signals based on a first modulation scheme while modulating a second carrier of the plurality of spectrally overlapping carrier signals based on a second modulation scheme.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: October 1, 2013
    Assignee: HTC Corporation
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lee Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Patent number: 8406115
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: March 26, 2013
    Assignee: HTC Corporation
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Patent number: 8351321
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a receiver configured to de-modulate symbols from at least one of a plurality of spectrally overlapping carrier signals to produce a receiver output; a transmitter configured to modulate symbols onto at least one of a plurality of the spectrally overlapping carrier signals; a processor coupled to the transmitter, wherein the processor outputs data for transmission by the transmitter, wherein the processor applies an inverse Fourier transform to the data transmitted by the transmitter; the processor coupled to the receiver, wherein the processor applies a Fourier transform to the receiver output; and a controller programmed to instruct the transmitter to transmit at least one symbol representing a request for bandwidth allocation on a first carrier; wherein the controller is further programmed to determine when a collision has occurred on the first carrier.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: January 8, 2013
    Assignee: HTC Corporation
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S Russell, Calvin G Nelson, Niranjan R Samant, Joseph F Chiapetta, Scott Sarnikowski
  • Patent number: 8315150
    Abstract: A multipoint-to-point, orthogonal frequency division multiplexed (OFDM) communication system is provided. The system includes a plurality of remote units and a host unit that includes a demodulator. Each of the remote units transmits an upstream OFDM signal using a multiple access scheme to the host unit demodulator using at least one of a plurality of orthogonal tones within an OFDM waveform. The host unit receives the upstream OFDM signals from a plurality of the remote units. Portions of upstream OFDM signals from at least two of the remote units arrive at the host unit at the same time. The host unit demodulator demodulates the portions and the upstream signals from the plurality of remote units arrive at the host unit synchronized in time and frequency within the OFDM waveform.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: November 20, 2012
    Assignee: HTC Corporation
    Inventors: Michael J. Geile, Brian D. Anderson, Jeffrey Brede, Robert J. Kirscht, Michael J. Fort, Mark D. Elpers
  • Publication number: 20120195184
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a transmitter configured to modulate symbols onto at least one of a plurality of the spectrally overlapping carrier signals; a processor coupled to the transmitter, wherein the processor outputs data for transmission by the transmitter, wherein the processor applies an inverse Fourier transform to the data transmitted by the transmitter; the processor modulating a first carrier of the plurality of spectrally overlapping carrier signals based on a first modulation scheme while modulating a second carrier of the plurality of spectrally overlapping carrier signals based on a second modulation scheme.
    Type: Application
    Filed: April 11, 2012
    Publication date: August 2, 2012
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Patent number: 8199632
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a receiver configured to receive a waveform comprising a plurality of spectrally overlapping carrier signals from at least two of a plurality of remote units, wherein the plurality of spectrally overlapping carrier signals are modulated using an inverse Fourier transform algorithm; a transmitter; a processor coupled to the transmitter, wherein the processor outputs data for transmission to the transmitter, wherein the processor applies an inverse Fourier transform algorithm to the data provided to the transmitter; and a controller programmed to analyze a training signal received from a first remote unit and adjust receiver equalizer parameters based on the training signal.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: June 12, 2012
    Assignee: HTC Corporation
    Inventors: Michael J. Geile, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Michael J. Fort, Tammy Ferris
  • Patent number: 8174956
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a transmitter configured to modulate symbols onto at least one of a plurality of the spectrally overlapping carrier signals; a processor coupled to the transmitter, wherein the processor outputs data for transmission by the transmitter, wherein the processor applies an inverse Fourier transform to the data transmitted by the transmitter; the processor modulating a first carrier of the plurality of spectrally overlapping carrier signals based on a first modulation scheme while modulating a second carrier of the plurality of spectrally overlapping carrier signals based on a second modulation scheme.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: May 8, 2012
    Assignee: HTC Corporation
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S Russell, Calvin G Nelson, Niranjan R Samant, Joseph F Chiappetta, Scott Sarnikowski
  • Publication number: 20120076183
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a transmitter configured to modulate symbols onto at least one of a plurality of the spectrally overlapping carrier signals; a processor coupled to the transmitter, wherein the processor outputs data for transmission by the transmitter, wherein the processor applies an inverse Fourier transform to the data transmitted by the transmitter; the processor modulating a first carrier of the plurality of spectrally overlapping carrier signals based on a first modulation scheme while modulating a second carrier of the plurality of spectrally overlapping carrier signals based on a second modulation scheme.
    Type: Application
    Filed: December 5, 2011
    Publication date: March 29, 2012
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lee Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Patent number: 8089853
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a receiver configured to receive a waveform comprising a plurality of spectrally overlapping carrier signals from at least two of a plurality of remote units, wherein the plurality of spectrally overlapping carrier signals are modulated using an inverse Fourier transform algorithm; a transmitter; a processor coupled to the transmitter, wherein the processor outputs data for transmission to the transmitter, wherein the processor applies an inverse Fourier transform algorithm to the data provided to the transmitter; a controller programed to instruct the transmitter to transmit a predetermined identifier on at least one of the spectrally overlapping carrier signals, the predetermined identifier identifying to a first remote unit a range of the plurality of spectrally overlapping carrier signals for the first remote unit to receive control information.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: January 3, 2012
    Assignee: HTC Corporation
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S Russell, Calvin G Nelson, Niranjan R Samant, Joseph F Chiappetta, Scott Sarnikowski
  • Publication number: 20110255621
    Abstract: A multipoint-to-point, orthogonal frequency division multiplexed (OFDM) communication system is provided. The system includes a plurality of remote units and a host unit that includes a demodulator. Each of the remote units transmits an upstream OFDM signal using a multiple access scheme to the host unit demodulator using at least one of a plurality of orthogonal tones within an OFDM waveform. The host unit receives the upstream OFDM signals from a plurality of the remote units. Portions of upstream OFDM signals from at least two of the remote units arrive at the host unit at the same time. The host unit demodulator demodulates the portions and the upstream signals from the plurality of remote units arrive at the host unit synchronized in time and frequency within the OFDM waveform.
    Type: Application
    Filed: June 10, 2011
    Publication date: October 20, 2011
    Inventors: Michael J. Geile, Brian D. Anderson, Jeffrey Brede, Robert J. Kirscht, Michael J. Fort, Mark D. Elpers
  • Publication number: 20110242963
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided.
    Type: Application
    Filed: June 10, 2011
    Publication date: October 6, 2011
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smingelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Hene Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Patent number: 7995454
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: August 9, 2011
    Assignee: HTC Corporation
    Inventors: Michael J. Geile, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Michael J. Fort, Tammy Ferris
  • Patent number: 7957265
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprising: a receiver configured to de-modulate symbols from at least one of a plurality of spectrally overlapping carrier signals; a transmitter configured to modulate symbols onto at least one of a plurality of the spectrally overlapping carrier signals; a processor coupled to the transmitter, wherein the processor outputs data for transmission by the transmitter, wherein the processor applies an inverse Fourier transform to the data transmitted by the transmitter; and a controller programmed to instruct the transmitter to transmit a coarse timing adjustment followed by at least one secondary timing adjustment, wherein the secondary timing adjustment is a fine tuning adjustment with respect to the coarse timing adjustment.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: June 7, 2011
    Assignee: ADC Telecommunications, Inc.
    Inventors: Michael J. Geile, Jeffrey Brede
  • Patent number: 7936662
    Abstract: A bidirectional communication system is provided. In one embodiment, a method for an orthogonal frequency division multiplexing multipoint-to-point communications system comprises establishing communication between a first remote unit of a plurality of remote units and a host unit, the plurality of remote units communicatively coupled to the host unit in a multipoint-to-point configuration using orthogonal frequency division multiplexing; and adjusting a round trip path delay associated with the first remote unit.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: May 3, 2011
    Assignee: ADC Telecommunications, Inc.
    Inventors: Michael J. Geile, Jeffrey Brede
  • Patent number: 7912138
    Abstract: A multipoint-to-point, orthogonal frequency division multiplexed (OFDM) communication system is provided. The system includes a plurality of remote units and a host unit that includes a demodulator. Each of the remote units transmits an upstream OFDM signal using a multiple access scheme to the host unit demodulator using at least one of a plurality of orthogonal tones within an OFDM waveform. The host unit receives the upstream OFDM signals from a plurality of the remote units, the tones of the upstream signals being substantially orthogonal when received at the host unit. Portions of upstream OFDM signals from at least two of the remote units arrive at the host unit at the same time. The host unit demodulator demodulates the portions of the upstream OFDM signals.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: March 22, 2011
    Assignee: ADC Telecommunications, Inc.
    Inventors: Michael J. Geile, Harold A. Roberts, Michael J. Fort, Brian D. Anderson, Jeffrey Brede
  • Patent number: 7881181
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a receiver configured to receive a waveform comprising a plurality of spectrally overlapping carrier signals from at least two of a plurality of remotes, the carrier signals are modulated using an inverse Fourier transform; a transmitter; a processor coupled to the transmitter, the processor outputs data for transmission to the transmitter, the processor applies an inverse Fourier transform to the data provided to the transmitter; a controller programmed to instruct the transmitter to transmit timing adjustments to the at least two of the plurality of remotes, the timing adjustments instruct the at least two of the plurality of remotes to adjust transmission timing so that transmitted symbols associated with frames of a predetermined multiframe structure are received in sequence from the at least two of the plurality of remotes based on the structure.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: February 1, 2011
    Assignee: ADC Telecommunications, Inc.
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S Russell, Calvin G Nelson, Niranjan R Samant, Joseph F Chiappetta, Scott Sarnikowski
  • Patent number: 7881180
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprising: a receiver configured to de-modulate symbols from at least one of a plurality of spectrally overlapping carrier signals; a transmitter configured to modulate symbols onto at least one of a plurality of the spectrally overlapping carrier signals; a processor coupled to the transmitter, wherein the processor outputs data for transmission by the transmitter, wherein the processor applies an inverse Fourier transform to the data transmitted by the transmitter; and a controller programmed to multiplex both payload data and control data onto a first carrier of the spectrally overlapping carrier signals.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: February 1, 2011
    Assignee: ADC Telecommunications, Inc.
    Inventors: Michael J. Geile, Harold A. Roberts, Jeffrey Brede
  • Patent number: 7872985
    Abstract: A bidirectional communication system is provided. In one embodiment, a system comprises a host and a plurality of remote units, wherein a plurality of tones is shared among the plurality of remote units in order to communicate with the host using orthogonal frequency division multiplexing, wherein the plurality of tones is shared in a manner that permits at least two of the remote units to transmit to the host at any one time using the plurality of tones. The host causes at least one remote unit to adjust a timing of symbols transmitted on at least one of the plurality of orthogonal tones in order to improve an alignment of multiframes received at the host.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: January 18, 2011
    Assignee: ADC DSL Systems, Inc.
    Inventors: Michael J. Geile, Jeffrey Brede
  • Patent number: 7773537
    Abstract: Systems and methods for ranging adjustments are provided. In one embodiment, a remote service unit comprises: a transceiver communicatively coupled with a host in a multi-point to point configuration, the transceiver configured to communicate with the host via an OFDM waveform; and a multi-carrier modem coupled to the transceiver and configured to demodulate downstream information data from the OFDM waveform, the multi-carrier modem further configured to modulate upstream information data onto the OFDM waveform. The multi-carrier modem modulates upstream information data onto distinct subcarriers of the OFDM waveform, the multi-carrier modem synchronized with the host so that upstream OFDM signals transmitted by the transceiver and other upstream OFDM signals received at the host unit combine to a unified OFDM waveform. The multi-carrier modem adjusts a round trip path delay between the remote service unit and the host based on a path delay correction received from the host unit.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: August 10, 2010
    Assignee: ADC Telecommunications, Inc.
    Inventors: Michael J. Geile, Jeffrey Brede