Patents by Inventor Jeffrey Brede

Jeffrey Brede has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7756060
    Abstract: Systems and methods for OFDM tone allocation are provided. In one embodiment, an end-user communication device comprises: a first remote unit for communicating with a host unit using orthogonal frequency division multiplexing (OFDM), the host unit communicatively coupled to a plurality of remote units in a multipoint-to-point configuration, wherein OFDM waveform from distinct remote units of the plurality of remote units combine to a unified OFDM waveform at the host unit. The first remote unit is configured to transmit up to a plurality of tones, the up to a plurality of tones modulated with upstream information using OFDM. The first remote unit is configured to determine when bandwidth is needed for upstream transmission to the host unit. The first remote unit is configured to transmit a request for bandwidth to the host unit on a first tone of the plurality of tones, wherein access to the first tone is contention-based.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: July 13, 2010
    Assignee: ADC Telecommunications, Inc.
    Inventors: Michael J. Geile, Jeffrey Brede, Harold A. Roberts
  • Patent number: 7697453
    Abstract: Systems and methods for synchronization techniques in multipoint-to-point communication using orthogonal frequency division multiplexing are provided. In one embodiment, a method for multipoint-to-point communication comprises: receiving at a host a plurality of upstream symbols transmitted from a plurality of remote units, the upstream symbols transmitted on a plurality of orthogonal carriers modulated using an inverse Fourier transform; and determining respective round trip path delay values associated with each of at least two of the plurality of remote units.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: April 13, 2010
    Assignee: ADC Telecommunications, Inc.
    Inventors: Michael J. Geile, Jeffrey Brede
  • Publication number: 20090238065
    Abstract: Systems and methods for round-trip-delay adjustment in a multipoint-to-point orthogonal frequency division multiplexing (OFDM) system are provided. In one embodiment, a method for a remote unit to request bandwidth in an Orthogonal Frequency Division Multiplexing (OFDM) multi-point to point system comprises: transmitting a signal from a remote unit having a request for bandwidth to a host unit on a first tone, the signal from the remote unit configured to combine with a signal from at least one other remote unit on a different tone to form a coherent OFDM waveform; determining when a collision has occurred on the first tone between the signal transmitted by the remote unit and a signal from at least one other remote unit; and when a collision occurs, re-transmitting the request for bandwidth on the first tone.
    Type: Application
    Filed: May 29, 2009
    Publication date: September 24, 2009
    Applicant: ADC TELECOMMUNICATIONS, INC.
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Publication number: 20090225818
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a receiver configured to de-modulate symbols from at least one of a plurality of spectrally overlapping carrier signals to produce a receiver output; a transmitter configured to modulate symbols onto at least one of a plurality of the spectrally overlapping carrier signals; a processor coupled to the transmitter, wherein the processor outputs data for transmission by the transmitter, wherein the processor applies an inverse Fourier transform to the data transmitted by the transmitter; the processor coupled to the receiver, wherein the processor applies a Fourier transform to the receiver output; and a controller programmed to instruct the transmitter to transmit at least one symbol representing a request for bandwidth allocation on a first carrier; wherein the controller is further programmed to determine when a collision has occurred on the first carrier.
    Type: Application
    Filed: October 29, 2007
    Publication date: September 10, 2009
    Applicant: ADC Telecommunications, Inc.
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Patent number: 7580347
    Abstract: Systems and methods for course and fine synchronization are provided. In one embodiment, a method comprises establishing communication between a first remote of a plurality of remote units and a host, the plurality of remote units coupled to the host in a multipoint-to-point configuration; transmitting up to a plurality of tones from the first remote, the tones modulated with upstream information using orthogonal frequency division multiplexing (OFDM); making a first adjustment in a manner in which transmissions are transmitted from the first remote on at least one of the tones, the first adjustment varying the alignment of the transmissions received at the host; and making a second adjustment in the manner in which transmissions are transmitted from the first remote on the at least one of the tones, the second adjustment varying the alignment of the transmissions received at the host, wherein the second adjustment is finer the first adjustment.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: August 25, 2009
    Assignee: ADC Telecommunications, Inc.
    Inventors: Michael J. Geile, Jeffrey Brede
  • Patent number: 7539126
    Abstract: A bidirectional communication system is provided. In one embodiment, a method for an orthogonal frequency division multiplexing multipoint-to-point communications system comprises establishing communication between a first remote unit of a plurality of remote units and a host unit, the plurality of remote units communicatively coupled to the host unit in a multipoint-to-point configuration using orthogonal frequency division multiplexing; and adjusting a round trip path delay associated with the first remote unit.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: May 26, 2009
    Assignee: ADC Telecommunications, Inc.
    Inventors: Michael J. Geile, Jeffrey Brede
  • Patent number: 7535822
    Abstract: A method for maintaining the quality of transmission from a head end to a service unit in a telecommunications system that uses a multi-carrier transmission scheme with dynamic bandwidth allocation is disclosed. The method involves allocating a first payload channel to a service unit in a subband of a transmission channel of the telecommunications system and monitoring the quality of the first payload channel. When the quality of the first payload channel drops below a threshold, the method allocates a second, different payload channel to the channel unit.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: May 19, 2009
    Assignee: ADC Telecommunications, Inc.
    Inventors: Michael J Geile, Brian D Anderson, Jeffrey Brede, Robert J Kirscht, Michael J Fort, Mark D Elpers
  • Publication number: 20090092040
    Abstract: Methods and systems for selecting modulation in an orthogonal frequency division multiplexing system are provided. In one embodiment, a method for a remote unit of an OFDM multipoint-to-point communications system comprises: establishing communication between a first remote unit and a host unit, the first remote unit and a plurality of remote units communicatively coupled to the host unit in a multipoint-to-point configuration; transmitting a plurality of tones from the first remote unit such that tones from the first remote unit and at least one other remote unit are simultaneously received at the host unit, the plurality of tones modulated with upstream information using OFDM; modulating up to a plurality of tones using a first modulation scheme when transmitting a first type of upstream information; and modulating up to a plurality of tones using a second modulation scheme when transmitting a second type of upstream information.
    Type: Application
    Filed: November 17, 2008
    Publication date: April 9, 2009
    Applicant: ADC TELECOMMUNICATIONS, INC.
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Publication number: 20090080553
    Abstract: Systems and methods for synchronization techniques in multipoint-to-point communication using orthogonal frequency division multiplexing are provided. In one embodiment, a method for multipoint-to-point communication comprises: receiving at a host a plurality of upstream symbols transmitted from a plurality of remote units, the upstream symbols transmitted on a plurality of orthogonal carriers modulated using an inverse Fourier transform; and determining respective round trip path delay values associated with each of at least two of the plurality of remote units.
    Type: Application
    Filed: November 17, 2008
    Publication date: March 26, 2009
    Applicant: ADC TELECOMMUNICATIONS, INC.
    Inventors: Michael J. Geile, Brian D. Anderson, Jeffrey Brede, Robert J. Kirscht, Michael J. Fort, Mark D. Elpers
  • Publication number: 20090080505
    Abstract: Systems and methods for ranging adjustments are provided. In one embodiment, a remote service unit comprises: a transceiver communicatively coupled with a host in a multi-point to point configuration, the transceiver configured to communicate with the host via an OFDM waveform; and a multi-carrier modem coupled to the transceiver and configured to demodulate downstream information data from the OFDM waveform, the multi-carrier modem further configured to modulate upstream information data onto the OFDM waveform. The multi-carrier modem modulates upstream information data onto distinct subcarriers of the OFDM waveform, the multi-carrier modem synchronized with the host so that upstream OFDM signals transmitted by the transceiver and other upstream OFDM signals received at the host unit combine to a unified OFDM waveform. The multi-carrier modem adjusts a round trip path delay between the remote service unit and the host based on a path delay correction received from the host unit.
    Type: Application
    Filed: November 17, 2008
    Publication date: March 26, 2009
    Applicant: ADC TELECOMMUNICATIONS, INC.
    Inventors: Michael J. Geile, Jeffrey Brede
  • Publication number: 20090080554
    Abstract: Systems and methods for OFDM tone allocation are provided. In one embodiment, an end-user communication device comprises: a first remote unit for communicating with a host unit using orthogonal frequency division multiplexing (OFDM), the host unit communicatively coupled to a plurality of remote units in a multipoint-to-point configuration, wherein OFDM waveform from distinct remote units of the plurality of remote units combine to a unified OFDM waveform at the host unit. The first remote unit is configured to transmit up to a plurality of tones, the up to a plurality of tones modulated with upstream information using OFDM. The first remote unit is configured to determine when bandwidth is needed for upstream transmission to the host unit. The first remote unit is configured to transmit a request for bandwidth to the host unit on a first tone of the plurality of tones, wherein access to the first tone is contention-based.
    Type: Application
    Filed: November 17, 2008
    Publication date: March 26, 2009
    Applicant: ADC TELECOMMUNICATIONS, INC.
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Publication number: 20090080552
    Abstract: Systems for multiple use subchannels are provided. In one embodiment, a bidirectional communication system comprises: a first remote unit for communicating with a host using OFDM, the host communicatively coupled to a plurality of remote units in a multipoint-to-point configuration. The first remote unit is configured to transmit up to a plurality of tones, the up to a plurality of tones modulated with upstream information using OFDM, the first remote unit including a modulator for modulating the up to a plurality of tones using OFDM. The modulator is configured to adjust a carrier frequency and timing of the plurality of tones such that when any tones are transmitted from the first remote unit and at least one other remote unit, the orthogonality of the tones when received at the host unit is improved. Both control data and payload data are transmitted on a first tone of the plurality of tones.
    Type: Application
    Filed: November 17, 2008
    Publication date: March 26, 2009
    Applicant: ADC TELECOMMUNICATIONS, INC.
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Publication number: 20090074095
    Abstract: A bidirectional communication system is provided. In one embodiment, a system comprises a host and a plurality of remote units, wherein a plurality of tones is shared among the plurality of remote units in order to communicate with the host using orthogonal frequency division multiplexing, wherein the plurality of tones is shared in a manner that permits at least two of the remote units to transmit to the host at any one time using the plurality of tones. The host causes at least one remote unit to adjust a timing of symbols transmitted on at least one of the plurality of orthogonal tones in order to improve an alignment of multiframes received at the host.
    Type: Application
    Filed: November 17, 2008
    Publication date: March 19, 2009
    Applicant: ADC TELECOMMUNICATIONS, INC.
    Inventors: Michael J. Geile, Brian D. Anderson, Jeffrey Brede, Robert J. Kirscht, Michael J. Fort, Mark D. Elpers
  • Publication number: 20090067319
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a method for ranging comprises: receiving at a host a plurality of upstream symbols transmitted from a plurality of remote units, the upstream symbols transmitted on a plurality of orthogonal carriers modulated using an inverse Fourier transform; comparing a phase of at least one ranging symbol received from at least one of the plurality of remote units with a phase of a symbol transmitted by the host; and transmitting an adjustment instruction instructing the at least one of the plurality of remote units to vary a phase of transmissions transmitted from the at least one of the plurality of remote units based on a difference in phase between the at least one ranging symbol and the symbol transmitted by the host unit.
    Type: Application
    Filed: October 29, 2007
    Publication date: March 12, 2009
    Applicant: ADC TELECOMMUNICATIONS, INC.
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Publication number: 20090067516
    Abstract: A bidirectional communication system is provided. In one embodiment, a method for an orthogonal frequency division multiplexing multipoint-to-point communications system comprises establishing communication between a first remote unit of a plurality of remote units and a host unit, the plurality of remote units communicatively coupled to the host unit in a multipoint-to-point configuration using orthogonal frequency division multiplexing; and adjusting a round trip path delay associated with the first remote unit.
    Type: Application
    Filed: October 30, 2007
    Publication date: March 12, 2009
    Applicant: ADC TELECOMMUNICATIONS, INC.
    Inventors: Michael J. Geile, Brian D. Anderson, Jeffrey Brede, Robert J. Kirscht, Michael J. Fort, Mark D. Elpers
  • Patent number: 7492791
    Abstract: A bidirectional communication system is provided. In one embodiment, a system comprises a host unit to communicate with a plurality of remote units using orthogonal frequency division multiplexing (OFDM), the plurality of remote units communicatively coupled to the host unit in a multipoint-to-point configuration; and wherein the host unit is configured to adjust a round trip path delay associated with at least one of the plurality of remote units.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: February 17, 2009
    Assignee: ADC Telecommunications, Inc.
    Inventors: Michael J. Geile, Jeffrey Brede
  • Patent number: 7489624
    Abstract: Systems and methods for scanning by remotes in multipoint-to-point communication using orthogonal frequency division multiplexing are provided. In one embodiment, a system comprises a host unit; and a plurality of remote units using a multiple access scheme to communicate at the same time with the host unit using orthogonal frequency division multiplexing (OFDM); wherein at least one remote unit scans a band of frequencies for a downstream signal from the host unit; wherein the host unit sends an adjustment signal to the at least one remote unit instructing the at least one remote unit to adjust the timing of transmissions from the remote unit to improve orthogonality of an OFDM waveform received at the host unit; and wherein the host unit allocates orthogonal tones within the OFDM waveform to the plurality of remote units.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: February 10, 2009
    Assignee: ADC Telecommunications Inc.
    Inventors: Michael J. Geile, Jeffrey Brede, Harold A. Roberts, Michael J. Fort
  • Publication number: 20080273607
    Abstract: A bidirectional communication system is provided. In one embodiment, a system comprises a host unit to communicate with a plurality of remote units using orthogonal frequency division multiplexing (OFDM), the plurality of remote units communicatively coupled to the host unit in a multipoint-to-point configuration; and wherein the host unit is configured to adjust a round trip path delay associated with at least one of the plurality of remote units.
    Type: Application
    Filed: March 15, 2007
    Publication date: November 6, 2008
    Applicant: ADC TELECOMMUNICATIONS, INC.
    Inventors: Michael J. Geile, Brian D. Anderson, Jeffrey Brede, Robert J. Kirscht, Michael J. Fort, Mark D. Elpers
  • Publication number: 20080253435
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided.
    Type: Application
    Filed: October 29, 2007
    Publication date: October 16, 2008
    Applicant: ADC TELECOMMUNICATIONS, INC.
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski
  • Publication number: 20080240410
    Abstract: Systems and methods for orthogonal frequency division multiplexing are provided. In one embodiment, a multi-carrier modem comprises: a receiver configured to receive a waveform comprising a plurality of spectrally overlapping carrier signals from at least two of a plurality of remote units, wherein the plurality of spectrally overlapping carrier signals are modulated using an inverse Fourier transform algorithm; a transmitter; a processor coupled to the transmitter, wherein the processor outputs data for transmission to the transmitter, wherein the processor applies an inverse Fourier transform algorithm to the data provided to the transmitter; and a controller programmed to analyze a training signal received from a first remote unit and adjust receiver equalizer parameters based on the training signal.
    Type: Application
    Filed: October 29, 2007
    Publication date: October 2, 2008
    Applicant: ADC TELECOMMUNICATIONS, INC.
    Inventors: Mark J. Dapper, Michael J. Geile, Terrance J. Hill, Harold A. Roberts, Brian D. Anderson, Jeffrey Brede, Mark S. Wadman, Robert J. Kirscht, James J. Herrmann, Michael J. Fort, Steven P. Buska, Jeff Solum, Debra Lea Enfield, Darrell Berg, Thomas Smigelski, Thomas C. Tucker, Joe Hall, John M. Logajan, Somvay Boualouang, Heng Lou, Mark D. Elpers, Matt Downs, Tammy Ferris, Adam Opoczynski, David S. Russell, Calvin G. Nelson, Niranjan R. Samant, Joseph F. Chiappetta, Scott Sarnikowski