Patents by Inventor Jeffrey C. SHEARER

Jeffrey C. SHEARER has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170222024
    Abstract: A semiconductor device comprises a nanowire arranged over a substrate, a gate stack arranged around the nanowire, a spacer arranged along a sidewall of the gate stack, a cavity defined by a distal end of the nanowire and the spacer, and a source/drain region partially disposed in the cavity and in contact with the distal end of the nanowire.
    Type: Application
    Filed: December 2, 2016
    Publication date: August 3, 2017
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Fee Li Lie, Eric R. Miller, Jeffrey C. Shearer, John R. Sporre, Sean Teehan
  • Patent number: 9716184
    Abstract: In an embodiment, this disclosure relates to a method of creating an alignment feature within a sidewall image transfer process by the addition of a block mask. The presence of the alignment feature would enable better overlay and alignment for subsequent lithographic stacks.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: July 25, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Sivananda K. Kanakasabapathy, Fee Li Lie, Eric R. Miller, Jeffrey C. Shearer, John R. Sporre, Sean Teehan
  • Publication number: 20170179305
    Abstract: In an embodiment, this disclosure relates to a method of creating an alignment feature within a sidewall image transfer process by the addition of a block mask. The presence of the alignment feature would enable better overlay and alignment for subsequent lithographic stacks.
    Type: Application
    Filed: May 18, 2016
    Publication date: June 22, 2017
    Inventors: Kangguo Cheng, Sivananda K. Kanakasabapathy, Fee Li Lie, Eric R. Miller, Jeffrey C. Shearer, John R. Sporre, Sean Teehan
  • Patent number: 9659779
    Abstract: Sacrificial gate structures having an aspect ratio of greater than 5:1 are formed on a substrate. In some embodiments, each sacrificial gate structure straddles a portion of a semiconductor fin that is present on the substrate. An anchoring element is formed orthogonal to each sacrificial gate structure rendering the sacrificial gate structures mechanically stable. After formation of a planarization dielectric layer, each anchoring element can be removed and thereafter each sacrificial gate structure can be replaced with a functional gate structure.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: May 23, 2017
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Ryan O. Jung, Fee Li Lie, Jeffrey C. Shearer, John R. Sporre, Sean Teehan
  • Patent number: 9627277
    Abstract: A method and structure to enable reliable dielectric spacer endpoint detection by utilizing a sacrificial spacer fin are provided. The sacrificial spacer fin that is employed has a same pitch as the pitch of each semiconductor fin and the same height as the dielectric spacers on the sidewalls of each semiconductor fin. Exposed portions of the sacrificial spacer fin are removed simultaneously during a dielectric spacer reactive ion etch (RIE). The presence of the sacrificial spacer fin improves the endpoint detection of the spacer RIE and increases the endpoint signal intensity.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: April 18, 2017
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Ryan O. Jung, Fee Li Lie, Eric R. Miller, Jeffrey C. Shearer, John R. Sporre, Sean Teehan
  • Patent number: 9536744
    Abstract: In an embodiment, this disclosure relates to a method of creating an alignment feature within a sidewall image transfer process by the addition of a block mask. The presence of the alignment feature would enable better overlay and alignment for subsequent lithographic stacks.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: January 3, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Sivananda K. Kanakasabapathy, Fee Li Lie, Eric R. Miller, Jeffrey C. Shearer, John R. Sporre, Sean Teehan
  • Publication number: 20160365292
    Abstract: A method and structure to enable reliable dielectric spacer endpoint detection by utilizing a sacrificial spacer fin are provided. The sacrificial spacer fin that is employed has a same pitch as the pitch of each semiconductor fin and the same height as the dielectric spacers on the sidewalls of each semiconductor fin. Exposed portions of the sacrificial spacer fin are removed simultaneously during a dielectric spacer reactive ion etch (RIE). The presence of the sacrificial spacer fin improves the endpoint detection of the spacer RIE and increases the endpoint signal intensity.
    Type: Application
    Filed: June 9, 2015
    Publication date: December 15, 2016
    Inventors: Kangguo Cheng, Ryan O. Jung, Fee Li Lie, Eric R. Miller, Jeffrey C. Shearer, John R. Sporre, Sean Teehan
  • Patent number: 9450095
    Abstract: A method of forming a semiconductor device that includes forming a high-k dielectric fin liner on the first plurality of fin structures in a first device region and a second plurality of fin structures in a second device region, and forming a gate structure including a low-k dielectric gate sidewall spacer on the channel region of the first and second plurality of fin structures. A first epitaxial semiconductor material on the first plurality of fin structures from which the high-k dielectric fin liner has been removed. The first epitaxial semiconductor material is then oxidized, and a remaining portion of the high-k dielectric fin liner is removed. A second epitaxial semiconductor material is formed on the second plurality of fin structures.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: September 20, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Marc A. Bergendahl, Kangguo Cheng, Jessica Dechene, Fee Li Lie, Eric R. Miller, Jeffrey C. Shearer, John R. Sporre, Sean Teehan
  • Publication number: 20160233095
    Abstract: Sacrificial gate structures having an aspect ratio of greater than 5:1 are formed on a substrate. In some embodiments, each sacrificial gate structure straddles a portion of a semiconductor fin that is present on the substrate. An anchoring element is formed orthogonal to each sacrificial gate structure rendering the sacrificial gate structures mechanically stable. After formation of a planarization dielectric layer, each anchoring element can be removed and thereafter each sacrificial gate structure can be replaced with a functional gate structure.
    Type: Application
    Filed: April 18, 2016
    Publication date: August 11, 2016
    Inventors: Kangguo CHENG, Ryan O. JUNG, Fee Li LIE, Jeffrey C. SHEARER, John R. SPORRE, Sean TEEHAN
  • Patent number: 9318574
    Abstract: Sacrificial gate structures having an aspect ratio of greater than 5:1 are formed on a substrate. In some embodiments, each sacrificial gate structure straddles a portion of a semiconductor fin that is present on the substrate. An anchoring element is formed orthogonal to each sacrificial gate structure rendering the sacrificial gate structures mechanically stable. After formation of a planarization dielectric layer, each anchoring element can be removed and thereafter each sacrificial gate structure can be replaced with a functional gate structure.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: April 19, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Ryan O. Jung, Fee Li Lie, Jeffrey C. Shearer, John R. Sporre, Sean Teehan
  • Publication number: 20150372113
    Abstract: Sacrificial gate structures having an aspect ratio of greater than 5:1 are formed on a substrate. In some embodiments, each sacrificial gate structure straddles a portion of a semiconductor fin that is present on the substrate. An anchoring element is formed orthogonal to each sacrificial gate structure rendering the sacrificial gate structures mechanically stable. After formation of a planarization dielectric layer, each anchoring element can be removed and thereafter each sacrificial gate structure can be replaced with a functional gate structure.
    Type: Application
    Filed: June 18, 2014
    Publication date: December 24, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo CHENG, Ryan O. JUNG, Fee Li LIE, Jeffrey C. SHEARER, John R. SPORRE, Sean TEEHAN
  • Publication number: 20150372127
    Abstract: Sacrificial gate structures having an aspect ratio of greater than 5:1 are formed on a substrate. In some embodiments, each sacrificial gate structure straddles a portion of a semiconductor fin that is present on the substrate. An anchoring element is formed orthogonal to each sacrificial gate structure rendering the sacrificial gate structures mechanically stable. After formation of a planarization dielectric layer, each anchoring element can be removed and thereafter each sacrificial gate structure can be replaced with a functional gate structure.
    Type: Application
    Filed: October 27, 2014
    Publication date: December 24, 2015
    Inventors: Kangguo CHENG, Ryan O. JUNG, Fee Li LIE, Jeffrey C. SHEARER, John R. SPORRE, Sean TEEHAN