Patents by Inventor Jeffrey D. Messerly

Jeffrey D. Messerly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240138694
    Abstract: The system and method for characterizing a tissue of interest may include navigating a needle device in proximity to the tissue of interest. The needle device can comprise a member including a plurality of electroconductive segments. The plurality of electroconductive segments can be electrically insulated from one another. The device can also include a first conductive path electrically coupled to a first electroconductive segment. A second conductive path can be coupled to a second electroconductive segment. The method can include contacting the tissue of interest with the first electrode and determining a tissue impedance of the tissue of interest from an electrical signal from the first electrode. The method can also include characterizing the tissue of interest as malignant or benign based on the tissue impedance.
    Type: Application
    Filed: October 26, 2023
    Publication date: May 2, 2024
    Inventors: Joseph Thomas KEYES, Matthew KREVER, Siobhan CARROLL, Jeffrey D. MESSERLY, James T. SPIVEY
  • Patent number: 11944366
    Abstract: An end-effector is disclosed including an ultrasonic blade configured to acoustically couple to an ultrasonic transducer and electrically couple to a pole of an electrical generator and a clamp arm including a clamp jaw and a cantilever electrode fixed to the clamp jaw. The cantilever electrode is configured to electrically couple to an opposite pole of the electrical generator. The clamp arm may include an I-beam shaped clamp arm pad and the cantilever electrode is disposed between the I-beam. The clamp jaw, the cantilever electrode, and the clamp arm pad may define recesses along a length coinciding with the ultrasonic blade. The clamp arm pad may be fixed to the clamp jaw and disposed between the clamp jaw and the cantilever electrode and may extend beyond the surface of the cantilever electrode. The clamp arm may include a stationary gap setting pad and movable floating gap setting pads.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: April 2, 2024
    Assignee: Cilag GmbH International
    Inventors: Craig N. Faller, Richard W. Flaker, Nina Mastroianni, John E. Brady, Frederick E. Shelton, IV, Jeffrey D. Messerly
  • Patent number: 11937866
    Abstract: A method for performing an electrosurgical procedure using an electrosurgical instrument including an end effector is disclosed. The method comprises applying a bipolar energy to a target tissue grasped by the end effector in a tissue-feathering segment, applying an energy blend of the bipolar energy and a monopolar energy to the target tissue in a tissue-warming segment and a tissue-sealing segment following the tissue-warming segment, and discontinuing the bipolar energy but continuing to apply the monopolar energy to the target tissue in a tissue-cutting segment following the tissue-sealing segment.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: March 26, 2024
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, Kevin M. Fiebig, Taylor W. Aronhalt, Jeffrey D. Messerly, Mark S. Zeiner, Sarah A. Worthington, Joshua P. Morgan, Nicholas M. Morgan
  • Patent number: 11937863
    Abstract: An end-effector is disclosed. The end-effector includes a clamp arm and an ultrasonic blade configured to acoustically couple to an ultrasonic transducer and to electrically couple to a pole of an electrical generator. The clamp arm includes a clamp jaw, a plurality of variable longitudinal support elements, and a cantilever electrode configured to electrically couple to an opposite pole of the electrical generator, the cantilever electrode fixed to the clamp jaw at a proximal end and free to deflect at a distal end. The cantilever electrode is supported by the variable longitudinal support elements. The variable longitudinal support elements apply a variable force on the cantilever electrode from the proximal end to the distal end.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: March 26, 2024
    Assignee: Cilag GmbH International
    Inventors: Jeffrey D. Messerly, Frederick E. Shelton, IV, Stephen M. Leuck, Nina Mastroianni, John E. Brady, Wei Guo
  • Patent number: 11937769
    Abstract: A method including detecting a modular surgical device within bounds of a surgical operating room, connecting the modular surgical device to a surgical hub, connecting the surgical hub to a cloud-based system, transmitting surgical data associated with a surgical procedure being performed in the surgical operating room from the modular surgical device to the surgical hub, and transmitting the surgical data from the surgical hub to the cloud-based system.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: March 26, 2024
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, David C. Yates, Eitan T. Wiener, Jeffrey L Aldridge, Jeffrey D. Messerly, Jason L Harris, Tamara Widenhouse
  • Publication number: 20240081855
    Abstract: Provided is a system and medical device that includes self diagnosing control switches. The control switch may be slidable within a slot in order to control activation of some function of the medical device. Due to natural wear and tear of movement of a control switch, the distances along the sliding slot that correspond to how much energy is used for the function may need to be adjusted over time in order to reflect the changing physical attributes of the actuator mechanism. The self diagnosing control switches of the present disclosures may be configured to automatically adjust for these thresholds using, for example, Hall effect sensors and magnets. In addition, in some cases, the self diagnosing control switches may be capable of indicating external influences on the controls, as well as predict a time until replacement is needed.
    Type: Application
    Filed: September 3, 2021
    Publication date: March 14, 2024
    Inventors: Frederick E. Shelton, IV, David C. Yates, Kevin L. Houser, Jeffrey D. Messerly, Jason L. Harris
  • Patent number: 11925378
    Abstract: An ultrasonic surgical device is disclosed including a surgical tool including a proximal transducer mounting portion defining a surface, a distal end effector end, and a waveguide disposed therebetween, the waveguide extending along a longitudinal axis. The ultrasonic surgical device further includes a transducer is in mechanical communication with the surface of the transducer mounting portion. The transducer is configured to operate in a D31 mode with respect to the longitudinal axis of the waveguide. Upon activation by an electrical signal having a predetermined frequency component, the transducer is configured to induce a standing wave in the surgical tool to cause the end effector to vibrate, the standing wave having a wavelength proportional to the predetermined frequency component of the electrical signal.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: March 12, 2024
    Assignee: Cilag GmbH International
    Inventors: Jeffrey D. Messerly, Brian D. Black, William A. Olson, Foster B. Stulen, Frederick Estera, William E. Clem, Jerome R. Morgan, Jeffrey L. Aldridge, Stephen M. Leuck, Kevin L. Houser
  • Patent number: 11918302
    Abstract: An interactive control unit is disclosed. The interactive control unit includes an interactive touchscreen display, an interface configured to couple the control unit to a surgical hub, a processor, and a memory coupled to the processor. The memory stores instructions executable by the processor to receive input commands from the interactive touchscreen display located inside a sterile field and transmit the input commands to the surgical hub to control devices coupled to the surgical hub located outside the sterile field.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: March 5, 2024
    Assignee: Cilag GmbH International
    Inventors: Jeffrey D. Messerly, Peter K. Shires, Monica L. Z. Rivard, Cory G. Kimball, David C. Yates, Jeffrey L. Aldridge, Daniel W. Price, William B. Weisenburgh, II, Jason L. Harris, Frederick E. Shelton, IV, Jerome R. Morgan
  • Patent number: 11896280
    Abstract: An end effector is disclosed comprising an ultrasonic blade and a clamp arm pivotable relative to the ultrasonic blade to capture tissue therebetween. The clamp arm defines an arcuate surface configured to at least partially surround the ultrasonic blade. The clamp arm comprises a circuit positioned on the arcuate surface. The circuit comprises an electrode layer configured to transmit RF energy to the tissue positioned between the clamp arm and the ultrasonic blade, a compressible layer positioned between the electrode layer and the arcuate surface, first pressure sensor layer positioned beneath the compressible layer between the compressible layer and the arcuate surface, and a second pressure sensor layer positioned above the compressible layer. The compressible layer is compressible to allow the electrode layer to deflect away from the ultrasonic blade. The compressible layer is compressible to allow the second pressure sensor layer to deflect away from the ultrasonic blade.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: February 13, 2024
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, David C. Yates, Kevin L. Houser, Jeffrey D. Messerly, Jason L. Harris, Geoffrey S. Strobl
  • Patent number: 11896221
    Abstract: A staple cartridge is disclosed that includes a first impedance sensing electrode and a second impedance sensing electrode. The first impedance sensing electrode is addressable to apply first energy to tissue positioned in a first zone. The second impedance sensing electrode is addressable to apply a second energy to tissue positioned in a second zone. A control circuit is configured to determine a thickness of the tissue positioned in the first zone based on the first energy and a thickness of the tissue positioned in the second zone based on the second energy. Advancement of a knife through an elongate slot of the staple cartridge is based on the determined thickness of the tissue in the first zone and the determined thickness of the tissue in the second zone.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: February 13, 2024
    Assignee: Cilag GmbH Intemational
    Inventors: Jeffrey D. Messerly, David C. Yates, Jason L. Harris, Frederick E. Shelton, IV
  • Patent number: 11890491
    Abstract: Various embodiments are directed to a method of driving an end effector coupled to an ultrasonic drive system of a surgical instrument. The method comprises generating at least one electrical signal. The at least one electrical signal is monitored against a first set of logic conditions. A first response is triggered when the first set of logic conditions is met. A parameter is determined from the at least one electrical signal.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: February 6, 2024
    Assignee: Cilag GmbH International
    Inventors: Jeffrey D. Messerly, Eitan T. Wiener, Brian T. Noyes, Jeffrey L. Aldridge, James R. Giordano, Robert J. Beetel, III, Daniel J. Abbott, Matthew C. Miller, Aaron C. Voegele, Jeffrey P. Wiley, Nathan J. Price, Daniel W. Price, Robert L. Koch, Jr.
  • Publication number: 20240023966
    Abstract: A method for adaptive control of surgical network control and interaction is disclosed. The surgical network includes a surgical feedback system. The surgical feedback system includes a surgical instrument, a data source, and a surgical hub configured to communicably couple to the data source and the surgical instrument. The surgical hub includes a control circuit. The method includes receiving, by the control circuit, information related to devices communicatively coupled to the surgical network; and adaptively controlling, by the control circuit, the surgical network based on the received information.
    Type: Application
    Filed: August 23, 2023
    Publication date: January 25, 2024
    Inventors: Frederick E. Shelton, IV, Jason L. Harris, Gregory J. Bakos, Michael J. Vendely, Taylor W. Aronhalt, Mark S. Zeiner, Jeffrey D. Messerly, Hilary A. Reinhardt
  • Patent number: 11871982
    Abstract: A control circuit is disclosed that comprises a resistor and a switch network. The switch network is configured to transition between a plurality of states corresponding to a plurality of operational modes of a surgical instrument. In a first phase of a control signal, the control circuit is configured to communicate surgical instrument information to a surgical generator. In the second phase of the control signal and when the at least one switch of the switch network is in a first state of the plurality of states, the control circuit is configured to provide an output corresponding to one of the plurality of states. In the second phase of the control signal and when the at least one switch of the switch network is in a second state of the plurality of states, the control circuit is configured to provide a second output.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: January 16, 2024
    Assignee: Cilag GmbH International
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, Brian T. Noyes, Jeffrey D. Messerly, James R. Giordano, Robert J. Beetel, III, Nathan J. Price, Matthew C. Miller, Jeffrey P. Wiley, Daniel W. Price, Robert L. Koch, Jr., Joseph A. Brotz, John E. Hein
  • Publication number: 20240009488
    Abstract: An apparatus comprises a body, a shaft assembly, an end effector, and a shield member. The shaft assembly extends distally from the body. The end effector is located at a distal end of the shaft assembly. The end effector comprises an ultrasonic blade and a clamp arm. The ultrasonic blade is configured to vibrate at an ultrasonic frequency. The clamp arm is movable toward the ultrasonic blade to compress tissue against the ultrasonic blade. The shield member is selectively movable from a first position to a second position in response to movement of the clamp arm toward the ultrasonic blade. The shield member is configured cover at least a first portion of the ultrasonic blade in the first position. The shield member is configured to uncover the first portion of the ultrasonic blade in the second position.
    Type: Application
    Filed: September 20, 2023
    Publication date: January 11, 2024
    Inventors: Michael J. Stokes, Jacob S. Gee, Kevin D. Felder, Tylor C. Muhlenkamp, Patrick J. Scoggins, Craig N. Faller, Jeffrey D. Messerly, David J. Cagle, William B. Weisenburgh, II
  • Patent number: 11864820
    Abstract: Aspects of the present disclosure are presented for a single surgical instrument configured to grasp, seal, and/or cut tissue through application of therapeutic energy, and also detect nerves through application of non-therapeutic electrical energy. A medical device may include two jaws at an end effector, used to apply therapeutic energy and to perform surgical procedures. The therapeutic energy may be in the form of ultrasonic vibrations or higher voltage electrosurgical energy. One of the jaws may be configured to cut tissue through application of the blade. In addition, one or both of the two jaws may be configured to apply nontherapeutic energy for nerve stimulation probing. The application of therapeutic energy may be disabled while the nontherapeutic nerve stimulation energy is applied, and vice versa. The nontherapeutic nerve stimulation energy may be applied to the use of one or more probes positioned near one or both of the jaws.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: January 9, 2024
    Assignee: CILAG GMBH INTERNATIONAL
    Inventors: David C. Yates, Jeffrey D. Messerly, Cameron D. McLain, Peter K. Shires, Frederick L. Estera, Cameron R. Nott, Foster B. Stulen, Christopher A Papa
  • Patent number: 11864845
    Abstract: An interactive control unit is disclosed. The interactive control unit includes an interactive touchscreen display, an interface configured to couple the control unit to a surgical hub, a processor, and a memory coupled to the processor. The memory stores instructions executable by the processor to receive input commands from the interactive touchscreen display located inside a sterile field and transmit the input commands to the surgical hub to control devices coupled to the surgical hub located outside the sterile field.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: January 9, 2024
    Assignee: Cilag GmbH International
    Inventors: Jeffrey D. Messerly, Peter K. Shires, Monica L. Z. Rivard, Cory G. Kimball, David C. Yates, Jeffrey L Aldridge, Daniel W. Price, William B. Weisenburgh, II, Jason L. Harris, Frederick E. Shelton, IV, Jerome R. Morgan
  • Publication number: 20240000500
    Abstract: A system for assessing the quality of seals applied to tissue by electrosurgical instruments is provided. The system can include a surgical device with a control circuit to determine that an end effector of the surgical device is in a closed configuration, determine a presence of tissue disposed between a first jaw and a second jaw of the end effector, monitor motion of the end effector in the closed configuration with tissue present between the first and second jaw, detect motion of the end effector outside of a predetermined range based on the motion data, and provide feedback data based on the detected motion of the end effector.
    Type: Application
    Filed: May 26, 2023
    Publication date: January 4, 2024
    Inventors: Richard W. Timm, Anshu Gupta, Shaun B. Schaeffer, Swapnil Rai, Matjaz Jogan, Jeffrey D. Messerly, Jonathan H. Duff, Rayonna M. Gordon, Benjamin M. Boyd, Claire J. Dong
  • Publication number: 20230414244
    Abstract: An ultrasonic surgical blade includes a body having a proximal end, a distal end, and an outer surface. The distal end is movable relative to a longitudinal axis in accordance with ultrasonic vibrations applied to the proximal end. At least a portion of the outer surface of the body comprises a lubricious coating adhered thereto. The lubricious coating has a coefficient of friction that is less than the coefficient of friction of the outer surface of the body.
    Type: Application
    Filed: August 10, 2023
    Publication date: December 28, 2023
    Inventors: David A. Witt, Jeffrey D. Messerly, Kevin L. Houser
  • Publication number: 20230404612
    Abstract: An apparatus for operating on tissue comprises a shaft, an acoustic waveguide, and an end effector. The acoustic waveguide extends along the shaft and is configured to transmit ultrasonic vibration. The end effector comprises an ultrasonic blade and a clamp arm. The ultrasonic blade is in acoustic communication with the acoustic waveguide. The clamp arm is pivotable toward the ultrasonic blade. The end effector defines a first longitudinal region and a second longitudinal region. The end effector is configured to clamp tissue between the clamp arm and the ultrasonic blade in the first longitudinal region. The end effector is configured to sever tissue with the ultrasonic blade in the second longitudinal region.
    Type: Application
    Filed: September 6, 2023
    Publication date: December 21, 2023
    Inventors: Jeffrey D. Messerly, David A. Witt, Foster B. Stulen, Christopher A. Papa, Vincent P. Battaglia, JR.
  • Patent number: D1018577
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: March 19, 2024
    Assignee: Cilag GmbH International
    Inventors: Jeffrey D. Messerly, David C. Yates, Jason L. Harris, Frederick E. Shelton, IV