Patents by Inventor Jeffrey D. Messerly

Jeffrey D. Messerly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230404612
    Abstract: An apparatus for operating on tissue comprises a shaft, an acoustic waveguide, and an end effector. The acoustic waveguide extends along the shaft and is configured to transmit ultrasonic vibration. The end effector comprises an ultrasonic blade and a clamp arm. The ultrasonic blade is in acoustic communication with the acoustic waveguide. The clamp arm is pivotable toward the ultrasonic blade. The end effector defines a first longitudinal region and a second longitudinal region. The end effector is configured to clamp tissue between the clamp arm and the ultrasonic blade in the first longitudinal region. The end effector is configured to sever tissue with the ultrasonic blade in the second longitudinal region.
    Type: Application
    Filed: September 6, 2023
    Publication date: December 21, 2023
    Inventors: Jeffrey D. Messerly, David A. Witt, Foster B. Stulen, Christopher A. Papa, Vincent P. Battaglia, JR.
  • Patent number: 11801399
    Abstract: An apparatus comprises a body, a shaft assembly, an end effector, and a shield member. The shaft assembly extends distally from the body. The end effector is located at a distal end of the shaft assembly. The end effector comprises an ultrasonic blade and a clamp arm. The ultrasonic blade is configured to vibrate at an ultrasonic frequency. The clamp arm is movable toward the ultrasonic blade to compress tissue against the ultrasonic blade. The shield member is selectively movable from a first position to a second position in response to movement of the clamp arm toward the ultrasonic blade. The shield member is configured cover at least a first portion of the ultrasonic blade in the first position. The shield member is configured to uncover the first portion of the ultrasonic blade in the second position.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: October 31, 2023
    Assignee: Cilag GmbH International
    Inventors: Michael J. Stokes, Jacob S. Gee, Kevin D. Felder, Tylor C. Muhlenkamp, Patrick J. Scoggins, Craig N. Faller, Jeffrey D. Messerly, David J. Cagle, William B. Weisenburgh, II
  • Patent number: 11786289
    Abstract: An apparatus includes a body, a shaft assembly, and an end effector. The end effector includes an ultrasonic blade and a clamp arm assembly. The ultrasonic blade is in acoustic communication with an acoustic waveguide of the shaft assembly. The clamp arm assembly is pivotable toward and away from the ultrasonic blade. The clamp arm assembly includes a first electrode and a second electrode. The first and second electrodes are operable to cooperate to apply bipolar RF energy to tissue.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: October 17, 2023
    Assignee: Cilag GmbH International
    Inventors: Jason R. Lesko, Catherine A. Corbett, William B. Weisenburgh, II, Barry C. Worrell, Mark A. Davison, Chad P. Boudreaux, Nathan Cummings, Ellen Burkart, William D. Dannaher, Christina M. Hough, Craig N. Faller, Adam N. Brown, Jeffrey D. Messerly, Kai Chen, William E. Clem
  • Patent number: 11786291
    Abstract: An end-effector is disclosed. The end-effector includes a clamp arm and an ultrasonic blade configured to acoustically couple to an ultrasonic transducer and electrically couple to a pole of an electrical generator. The clamp arm includes a clamp jaw, a clamp arm pad, and a cantilever electrode that is free to deflect. The cantilever electrode is configured to electrically couple to an opposite pole of the electrical generator. Also disclosed are configurations where the clamp arm includes a peripheral cantilever electrode and a clamp arm pad extending beyond the electrode, a floating cantilever electrode and a resilient clamp arm pad, an interlocked cantilever electrode plate and a clamp arm pad configured to receive the plate, a laterally deflectable cantilever electrode and a clamp arm pad extending beyond the electrode, and a flexible cantilever electrode and a clamp arm pad extending beyond the electrode.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: October 17, 2023
    Assignee: Cilag GmbH International
    Inventors: John M. Sarley, Chad P. Boudreaux, Tyler N. Brehm, Wei Guo, Ellen E. Burkart, Jeffrey D. Messerly, Craig N. Faller, Robert S. Bishop, Michael A. Keenan, William A. Olson, Richard W. Flaker, Frederick E. Shelton, IV
  • Patent number: 11786268
    Abstract: An apparatus for operating on tissue comprises a shaft, an acoustic waveguide, and an end effector. The acoustic waveguide extends along the shaft and is configured to transmit ultrasonic vibration. The end effector comprises an ultrasonic blade and a clamp arm. The ultrasonic blade is in acoustic communication with the acoustic waveguide. The clamp arm is pivotable toward the ultrasonic blade. The end effector defines a first longitudinal region and a second longitudinal region. The end effector is configured to clamp tissue between the clamp arm and the ultrasonic blade in the first longitudinal region. The end effector is configured to sever tissue with the ultrasonic blade in the second longitudinal region.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: October 17, 2023
    Assignee: Cilag GmbH International
    Inventors: Jeffrey D. Messerly, David A. Witt, Foster B. Stulen, Christopher A. Papa, Vincent P. Battaglia, Jr.
  • Patent number: 11786251
    Abstract: A method for adaptive control of surgical network control and interaction is disclosed. The surgical network includes a surgical feedback system. The surgical feedback system includes a surgical instrument, a data source, and a surgical hub configured to communicably couple to the data source and the surgical instrument. The surgical hub includes a control circuit. The method includes receiving, by the control circuit, information related to devices communicatively coupled to the surgical network; and adaptively controlling, by the control circuit, the surgical network based on the received information.
    Type: Grant
    Filed: February 21, 2022
    Date of Patent: October 17, 2023
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, Jason L. Harris, Michael J. Vendely, Taylor W. Aronhalt, Mark S. Zeiner, Jeffrey D. Messerly, Hilary A. Reinhardt
  • Patent number: 11771487
    Abstract: A surgical instrument is disclosed. The surgical instrument comprises an end effector comprising an ultrasonic blade and a clamp arm. The clamp arm is movable relative to the ultrasonic blade to transition the end effector between an open configuration and a closed configuration to clamp tissue between the ultrasonic blade and the clamp arm. The surgical instrument further comprises a transducer configured to generate an ultrasonic energy output and a waveguide configured to transmit the ultrasonic energy output to the ultrasonic blade. The surgical instrument further comprises a control circuit configured to monitor a parameter of the surgical instrument, wherein crossing an upper predetermined threshold of the parameter causes the control circuit to effect a first electromechanical system, and wherein crossing a lower predetermined threshold of the parameter causes the control circuit to effect a second electromechanical system different than the first electromechanically system.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: October 3, 2023
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, Jeffrey D. Messerly, Jason L. Harris, David C. Yates
  • Patent number: 11766276
    Abstract: An ultrasonic surgical blade includes a body having a proximal end, a distal end, and an outer surface. The distal end is movable relative to a longitudinal axis in accordance with ultrasonic vibrations applied to the proximal end. At least a portion of the outer surface of the body comprises a lubricious coating adhered thereto. The lubricious coating has a coefficient of friction that is less than the coefficient of friction of the outer surface of the body.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: September 26, 2023
    Assignee: Cilag GmbH International
    Inventors: David A. Witt, Jeffrey D. Messerly, Kevin L. Houser
  • Patent number: 11751929
    Abstract: A surgical instrument is disclosed that comprises a motor, a radio frequency (RF) energy generator, a first jaw, a second jaw movable relative to said first jaw in response to an actuation from said motor to capture tissue, and a segmented circuit comprising a first electrode configured to measure tissue impedance at a first position and a second electrode configured to measure tissue impedance at a second position. The RF energy generator is configured to transmit RF energy to the tissue by way of said first electrode or said second electrode. A controller is configured to control said motor based on the measured tissue impedances, energize said first electrode with a first amount of RF energy based on the tissue impedance measured at said first position, and energize said second electrode with a second amount of RF energy based on the tissue impedance measured at said second position.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: September 12, 2023
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, David C. Yates, Kevin L. Houser, Jeffrey D. Messerly, Jason L. Harris, Geoffrey S. Strobl
  • Patent number: 11751958
    Abstract: Various surgical hubs are disclosed. A surgical hub is for use with a surgical system in a surgical procedure performed in an operating room. The surgical hub comprises a control circuit configured to: pair the surgical hub with a first device of the surgical system; assign a first identifier to the first device; pair the surgical hub with a second device of the surgical system; assign a second identifier to the second device; and selectively pair the first device with the second device based on perioperative data.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: September 12, 2023
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, Jeffrey D. Messerly, David C. Yates
  • Publication number: 20230277205
    Abstract: The present disclosure is directed to end effectors. An end effector includes an outer shaft extending along a longitudinal axis and an inner shaft partially located within the outer shaft. The end effector may include an ultrasonic blade. The inner shaft may include biased and unbiased portions. The inner shaft and outer shaft may be translatable relative to one another. At one translatable position, the biased portion of the inner shaft may be located within the outer shaft and the unbiased portion may be substantially straight along the longitudinal axis. At another translatable position, the biased portion of the inner shaft may be located outside of and distally positioned from the outer shaft such that the biased portion of the inner shaft is bent away from the longitudinal axis.
    Type: Application
    Filed: February 17, 2023
    Publication date: September 7, 2023
    Inventors: William A. Olson, Jeffrey D. Messerly, Daniel W. Price, Kevin L. Houser, Craig N. Faller, William D. Dannaher, Sora Rhee, Tylor C. Muhlenkamp
  • Patent number: 11737750
    Abstract: A surgical instrument includes a body, a shaft assembly, and an end effector. The shaft assembly extends distally from the body. The end effector is located at a distal end portion of the shaft assembly. The end effector includes an active feature configured to operate on tissue. The body includes a drive feature operable to drive the active feature of the end effector. The body is removably coupled with the shaft assembly in a connected state and separated from the shaft assembly in a disconnected state. The body includes a drive feature configured to drive operation of the active feature of the effector. The drive feature includes at least one of an ultrasonic drive feature or a mechanical drive feature. A proximal end portion of the shaft assembly is configured to be removed from the body to separate the at least one activation feature from the drive feature.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: August 29, 2023
    Assignee: Cilag GmbH International
    Inventors: Jeffrey L. Aldridge, Eitan T. Wiener, Robert A. Kemerling, James R. Giordano, Vincent P. Battaglia, Jr., Daniel W. Price, Sean P. Conlon, Gregory W. Johnson, Jeffrey D. Messerly, Shan Wan, Kevin L. Houser, Foster B. Stulen, Jacob S. Gee, Jeffrey A. Bullock, John A. Hibner, William B. Weisenburgh, II
  • Publication number: 20230263548
    Abstract: A method for controlling an operation of an ultrasonic blade of an ultrasonic electromechanical system is disclosed. The method includes providing an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade via an ultrasonic waveguide; applying, by an energy source, a power level to the ultrasonic transducer; determining, by a control circuit coupled to a memory, a mechanical property of the ultrasonic electromechanical system; comparing, by the control circuit, the mechanical property with a reference mechanical property stored in the memory; and adjusting, by the control circuit, the power level applied to the ultrasonic transducer based on the comparison of the mechanical property with the reference mechanical property.
    Type: Application
    Filed: February 24, 2023
    Publication date: August 24, 2023
    Inventors: Frederick E. Shelton, IV, David C. Yates, Jason L. Harris, Kevin L. Houser, John E. Brady, Gregory A. Trees, Patrick J. Scoggins, Madeleine C. Jayme, Kristen G. Denzinger, Cameron R. Nott, Craig N. Faller, Amrita S. Sawhney, Eric M. Roberson, Stephen M. Leuck, Brian D. Black, Jeffrey D. Messerly, Fergus P. Quigley, Tamara S. Widenhouse
  • Patent number: 11707318
    Abstract: A surgical instrument that includes first and second jaws that are movably coupled together to move between an open and a closed position. The first jaw includes a first proximal end, a first distal tip, and a first jaw midpoint between the first proximal end and the first distal tip. The second jaw includes a second proximal end and a second distal tip. The first jaw includes a first alignment feature that is distal to the first jaw midpoint and is configured to engage a corresponding portion of the second jaw when the first and second jaws are moved to the closed position to align the first distal tip with the second distal tip.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: July 25, 2023
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, Kevin M. Fiebig, Taylor W. Aronhalt, Jeffrey D. Messerly
  • Publication number: 20230225754
    Abstract: A surgical apparatus includes a body assembly, a shaft, an acoustic waveguide, an articulation section, an end effector, and a rigidizing member. The shaft extends distally from the body assembly and defines a longitudinal axis. The acoustic waveguide includes a flexible portion. The articulation section is coupled with the shaft. A portion of the articulation section encompasses the flexible portion of the waveguide. The articulation section includes a first member and a second member. The second member is longitudinally translatable relative to the first member. The end effector includes an ultrasonic blade in acoustic communication with the waveguide. The rigidizing member is configured to selectively engage at least a portion of the articulation section to thereby selectively provide rigidity to the articulation section.
    Type: Application
    Filed: February 17, 2023
    Publication date: July 20, 2023
    Inventors: William B. Weisenburgh, II, Barry C. Worrell, Jeffrey D. Messerly, Kristen L. D'Uva, Craig N. Faller, John B. Schulte, Kristen G. Denzinger, Joseph E. Hollo, Jason R. Sullivan, Brian D. Black, Frederick L. Estera, Stephen M. Leuck, Tylor C. Muhlenkamp, Gregory A. Trees, Gregory W. Johnson
  • Patent number: 11690643
    Abstract: An ultrasonic surgical blade includes a body having a proximal end, a distal end, and an outer surface. The distal end is movable relative to a longitudinal axis in accordance with ultrasonic vibrations applied to the proximal end. At least a portion of the outer surface of the body comprises a lubricious coating adhered thereto. The lubricious coating has a coefficient of friction that is less than the coefficient of friction of the outer surface of the body.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: July 4, 2023
    Assignee: Cilag GmbH International
    Inventors: David A. Witt, Jeffrey D. Messerly, Kevin L. Houser
  • Patent number: 11684385
    Abstract: A surgical apparatus includes a body assembly, a shaft, an acoustic waveguide, an articulation section, an end effector, and a rigidizing member. The shaft extends distally from the body assembly and defines a longitudinal axis. The acoustic waveguide includes a flexible portion. The articulation section is coupled with the shaft. A portion of the articulation section encompasses the flexible portion of the waveguide. The articulation section includes a first member and a second member. The second member is longitudinally translatable relative to the first member. The end effector includes an ultrasonic blade in acoustic communication with the waveguide. The rigidizing member is configured to selectively engage at least a portion of the articulation section to thereby selectively provide rigidity to the articulation section.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: June 27, 2023
    Assignee: Cilag GmbH International
    Inventors: William B. Weisenburgh, II, Barry C. Worrell, Jeffrey D. Messerly, Kristen L. D'Uva, Craig N. Faller, John B. Schulte, Kristen G. Denzinger, Joseph E. Hollo, Jason R. Sullivan, Brian D. Black, Frederick L. Estera, Stephen M. Leuck, Tylor C. Muhlenkamp, Gregory A. Trees, Gregory W. Johnson
  • Patent number: 11684402
    Abstract: A surgical system is disclosed including impedance sensors and a control circuit. The impedance sensors are configured to apply a therapeutic level of RF energy to tissue, sense a real time impedance of the tissue, sense a first tissue impedance based on an initial contact with the tissue, sense a second tissue impedance of the tissue without applying a therapeutic amount of RF energy to the tissue. The control circuit is configured to determine a control parameter of a motor based on the first tissue impedance and the second tissue impedance, determine a percentage of use of an end effector, detect a change of the real time impedance of the tissue, adjust the control parameter of the motor based on the change of the real time impedance and the percentage of use of the end effector, and control delivery of a therapeutic energy application to the tissue.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: June 27, 2023
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, David C. Yates, Kevin L. Houser, Jeffrey D. Messerly, Jason L. Harris, Geoffrey S. Strobl
  • Patent number: 11672605
    Abstract: An interactive control unit is disclosed. The interactive control unit includes an interactive touchscreen display, an interface configured to couple the control unit to a surgical hub, a processor, and a memory coupled to the processor. The memory stores instructions executable by the processor to receive input commands from the interactive touchscreen display located inside a sterile field and transmit the input commands to the surgical hub to control devices coupled to the surgical hub located outside the sterile field.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: June 13, 2023
    Assignee: Cilag GmbH International
    Inventors: Jeffrey D. Messerly, Peter K. Shires, Monica L. Rivard, Cory G. Kimball, David C. Yates, Jeffrey L. Aldridge, Daniel W. Price, William B. Weisenburgh, II, Jason L. Harris, Frederick E. Shelton, IV, Jerome R. Morgan
  • Patent number: 11659023
    Abstract: Disclosed is a method including establishing a first communication link between a surgical visualization system outside a sterile field in an operating room and a primary display inside the sterile field, transmitting an image frame from the surgical visualization system to the primary display, establishing a second communication link between a surgical robotic hub in the operating room and the primary display, and transmitting another image frame from the surgical robotic hub to the primary display.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: May 23, 2023
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, David C. Yates, Eitan T. Wiener, Jeffrey L. Aldridge, Jeffrey D. Messerly, Jason L. Harris, Tamara Widenhouse, Jerome R. Morgan