Patents by Inventor Jeffrey E. Stahmann

Jeffrey E. Stahmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11813463
    Abstract: A ventricularly implantable medical device that includes a sensing module that is configured to detect an atrial fiducial and identify an atrial contraction based at least on part on the detected atrial fiducial. Control circuitry in the implantable medical device is configured to deliver a ventricular pacing therapy to a patient's heart based at least in part on the identified atrial contraction, and can automatically switch or revert the ventricular pacing therapies on the fly.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: November 14, 2023
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Jeffrey E. Stahmann, Keith R. Maile, Krzysztof Z. Siejko, Allan Charles Shuros, William J. Linder, Benjamin J. Haasl, Brendan Early Koop, Michael J. Kane
  • Patent number: 11723544
    Abstract: A hospitalization management system including a heart failure analyzer that receives diagnostic data including at least sensor data representative of one or more physiological signals sensed from a hospitalized patient using one or more sensors and assesses risk of rehospitalization for the patient using the diagnostic data. The outcome of the risk assessment is used during and following the patient's hospitalization for reducing the risk of rehospitalization.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: August 15, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Ramesh Wariar, Jeffrey E. Stahmann, Julie A. Thompson, Helen L. Reeve-Stoffer
  • Patent number: 11723545
    Abstract: Systems and methods to determine an indication of patient dehydration are disclosed, including receiving first and second physiologic information of a patient, the first physiologic information including heart sound information of the patient and the second physiologic information different than the first physiologic information, and determining the indication of patient dehydration using the received first and second physiologic information.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: August 15, 2023
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Jeffrey E. Stahmann, Viktoria A. Averina, Deepa Mahajan, Bruce R. Forsyth
  • Patent number: 11690559
    Abstract: An example of a system for monitoring and treating respiratory distress in a patient may include signal inputs, a signal processing circuit, and a respiratory distress analyzer. The signal inputs may be configured to receive patient condition signals indicative of autonomic balance of the patient. The signal processing circuit may be configured to process the patient condition signals and to generate patient condition parameters indicative of the autonomic balance using the processed patient condition signals. The respiratory distress analyzer may be configured to determine a state of the respiratory distress using the patient condition parameters, and may include a parameter analysis circuit configured to analyze the autonomic balance of the patient and to determine the state of the respiratory distress using an outcome of the analysis.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: July 4, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Elizabeth Mary Annoni, Viktoria A. Averina, Jeffrey E. Stahmann, Bryan Allen Clark
  • Patent number: 11666749
    Abstract: An implantable antibacterial barrier device for an elongated medical device, the elongated medical device configured to extend from a first site, through a second site, to a third site. The implantable antibacterial barrier device includes a housing configured to be disposed at the first site, a working electrode configured to be disposed at the second site, and a reference electrode configured to be disposed at the first site. The housing includes barrier circuitry. The working electrode electrically is coupled to the barrier circuitry. The reference electrode is electrically coupled to the barrier circuitry. The barrier circuitry is configured to selectively maintain the working electrode at a negative electrical potential relative to the reference electrode to form an antibacterial barrier.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: June 6, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey E. Stahmann, Keith R. Maile, Danielle Frankson, Craig M. Stolen, David J. Ternes
  • Publication number: 20230157640
    Abstract: Embodiments disclosed herein relate to devices and methods for monitoring one or more physiological parameters of a subject. In an embodiment, a wearable device comprises a substrate configured to be attached to a subject's skin. The substrate comprises a middle portion arranged between two end portions. The wearable device also comprises a physiological sensor. The physiological sensor is configured to sense a physiological signal of the subject when the wearable device is attached to the subject's skin. And, the wearable device comprises one or more electrical components arranged on at least one of the end portions, wherein at least one of the one or more electrical components is coupled to the physiological sensor.
    Type: Application
    Filed: January 9, 2023
    Publication date: May 25, 2023
    Inventors: Jan Weber, Jeffrey E. Stahmann, Keith R. Maile, James M. Peck
  • Patent number: 11612359
    Abstract: Systems and methods for assessing a patient's risk of renal dysfunction are described. A system may include sensor circuits to sense physiological signals and processors to generate signal metrics from the physiological signals. The system may generate a primary renal risk indication using a first signal metric, and a secondary renal risk indication using at least a second signal metric. The system may generate a composite renal risk indication and estimate a glomerular filtration rate or a chronic kidney disease stage using at least the primary and secondary risk indications. The composite renal risk indication, which indicative of a degree of renal dysfunction, may be presented to a clinician, or provided to a detector for detecting worsening heart failure.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: March 28, 2023
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Qi An, Yi Zhang, Viktoria A. Averina, Jeffrey E. Stahmann, Pramodsingh Hirasingh Thakur
  • Publication number: 20230081138
    Abstract: Embodiments herein relate to devices and methods for deep tissue optical sensing. In an embodiment, an optical monitoring device is included having a first optical emitter, where the first optical emitter is configured to emit light at a first wavelength. The optical monitoring device includes a first optical detector, where the first optical detector is configured to selectively detect incident light with respect to its angle of incidence on the optical monitoring device. The first optical emitter is configured so that the emitted light from the optical emitter propagates through a tissue at a depth of at least 1 cm into the tissue as measured from a surface of the optical monitoring device. The optical monitoring device is configured to determine a physiological parameter of the tissue using incident light detected by the first optical detector. Other embodiments are also included herein.
    Type: Application
    Filed: September 14, 2022
    Publication date: March 16, 2023
    Inventors: Jeffrey E. Stahmann, Keith R. Maile
  • Patent number: 11596353
    Abstract: Embodiments of the present disclosure relate to monitoring one or more physiological parameters of a subject using a multilayer wearable device. In an embodiment, a multilayer wearable device is configured to be attached to a subject. The multilayer wearable device comprises a substrate having multiple layers including a first portion connected to a second portion. The first portion has a first side and a second, opposite side. And the second portion has a first side and a second, opposite side. The first side of the first portion is configured to be attached to the subject and the second portion is arranged on top of the first portion such that the first side of the second portion is disposed adjacent the second side of the first portion. And, the wearable device includes one or more electrical components configured to sense a physiological parameter of the subject.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: March 7, 2023
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Jan Weber, Jeffrey E. Stahmann, James M. Peck, Keith R. Maile
  • Patent number: 11576614
    Abstract: Embodiments disclosed herein relate to devices and methods for monitoring one or more physiological parameters of a subject. In an embodiment, a wearable device comprises a substrate configured to attached to a subject's skin. The substrate comprises a middle portion arranged between two end portions, wherein the middle portion is more flexible than at least one of the end portions. The wearable device also comprises a physiological sensor arranged on the middle portion. The physiological sensor is configured to sense a physiological signal of the subject when the wearable device is attached to the subject's skin. And, the wearable device comprises one or more electrical components arranged on at least one of the end portions, wherein at least one of the one or more electrical components is coupled to the physiological sensor.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: February 14, 2023
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Jan Weber, Jeffrey E. Stahmann, Keith R. Maile, James M. Peck
  • Publication number: 20230024917
    Abstract: Embodiments herein relate to devices and methods for assessing deep tissue temperature using optical sensing. In an embodiment an optical temperature monitoring device is included having an optical emitter, wherein the optical emitter is configured to emit light at a first wavelength from 100 nm to 2000 nm. The optical temperature monitoring device also includes an optical detector configured to detect incident light. The optical temperature monitoring device can be configured so that the light from the optical emitter propagates at a depth of at least 1 cm through tissue as measured from a surface of the optical temperature monitoring device and back to the optical detector and the incident light detected by the optical detector is used to determine a temperature of the tissue at depths of at least 1 cm as measured from a surface of the optical temperature monitoring device. Other embodiments are also included herein.
    Type: Application
    Filed: July 14, 2022
    Publication date: January 26, 2023
    Inventors: Jeffrey E. Stahmann, Keith R. Maile
  • Publication number: 20230025497
    Abstract: Embodiments herein relate to devices and methods for measuring cardiogenic airway modulations using optical sensing. In an embodiment, an optical cardiogenic modulation monitoring device can be included having an optical emitter configured to emit light at a first wavelength and an optical detector configured to detect incident light. The monitoring device can be configured so that light emitted from the optical emitter propagates through lung tissue. The monitoring device can also be configured to use detected incident light to measure cardiogenic oscillations of the lung tissue. Other embodiments are also included herein.
    Type: Application
    Filed: July 15, 2022
    Publication date: January 26, 2023
    Inventors: Jeffrey E. Stahmann, Keith R. Maile
  • Publication number: 20230017684
    Abstract: Embodiments herein relate to devices and methods for assessing pulmonary status using optical oxygenation sensing. In an embodiment, an oxygenation monitoring device can be included having a first optical emitter, wherein the first optical emitter can be configured to emit light at a first wavelength from 100 nanometers (nm) to 2000 nm. The oxygenation monitoring device and further include a first optical detector, wherein the first optical detector can be configured to detect incident light. The device can be configured so that emitted light from the first optical emitter propagates through a lung tissue and detected incident light can be used to determine an oxygenation status of the lung tissue. Other embodiments are also included herein.
    Type: Application
    Filed: July 14, 2022
    Publication date: January 19, 2023
    Inventors: Jeffrey E. Stahmann, Keith R. Maile
  • Publication number: 20230014499
    Abstract: Embodiments herein relate to devices and methods for assessing pulmonary congestion using optical sensing techniques. In an embodiment, a pulmonary congestion monitoring device can be included having a first optical emitter, wherein the first optical emitter can be configured to emit light at a first wavelength, such as at a near-infrared wavelength or an ultraviolet wavelength. The monitoring device can also include a first optical detector configured to detect incident light. The first optical emitter and the first optical detector can be separated by a distance of 1 centimeters (cm) to 10 cm. The monitoring device can be configured so that the light from the first optical emitter propagates through at least one of a lung tissue and an airway tissue. The monitoring device can also be configured to use detected incident light to determine a congestion status of the lung tissue. Other embodiments are also included herein.
    Type: Application
    Filed: July 15, 2022
    Publication date: January 19, 2023
    Inventors: Jeffrey E. Stahmann, Keith R. Maile
  • Patent number: 11476927
    Abstract: Systems and methods for managing communication strategies between implanted medical devices. Methods include temporal optimization relative to one or more identified conditions in the body. A selected characteristic, such as a signal representative or linked to a biological function, is assessed to determine its likely impact on communication capabilities, and one or more communication strategies may be developed to optimize intra-body communication.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: October 18, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Jacob M. Ludwig, Michael J. Kane, Brendan E. Koop, William J. Linder, Keith R. Maile, Jeffrey E. Stahmann
  • Publication number: 20220296904
    Abstract: Various aspects of the present subject matter relate to an implantable device. Various device embodiments comprise at least one port to connect to at least one lead with at least electrode, stimulation circuitry connected to the at least one port and adapted to provide at least one neural stimulation therapy to at least one neural stimulation target using the at least one electrode, sensing circuitry connected to the at least one port and adapted to provide a sensed signal, and a controller connected to the stimulation circuitry to provide the at least one neural stimulation therapy and to the sensing circuitry to receive the sensed signal. In response to a triggering event, the controller is adapted to switch between at least two modes. Other aspects and embodiments are provided herein.
    Type: Application
    Filed: June 8, 2022
    Publication date: September 22, 2022
    Inventors: Imad Libbus, Andrew P. Kramer, William J. Linder, Jeffrey E. Stahmann
  • Patent number: 11439304
    Abstract: Embodiments herein relate to systems and methods for combining data from different types of sensors. In an embodiment, a medical system is included. The medical system can include a first sensor configured to produce a first value for an analyte and a second sensor different than the first sensor, the second sensor configured to produce a second value for the analyte. The medical system can also include a controller configured to receive the first and second values. The controller can create a blended analyte value from the first value and second value. Other embodiments are included herein.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: September 13, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey E. Stahmann, Yingbo Li, Michael John Kane
  • Patent number: 11419560
    Abstract: An example of a system for monitoring and treating a medical condition of a patient may include signal inputs to receive patient condition signals indicative of a state of inflammatory bowel disease (IBD), a signal processing circuit configured to process the patient condition signals and generate patient condition parameters indicative of the state of IBD using the processed patient condition signals, and a medical condition analyzer configured to analyze the patient condition parameters and determine the medical condition including the state of IBD using an outcome of the analysis. The patient condition parameters may include one or more physiological marker parameters each representative of a physiological marker of IBD and one or more quality of life parameters each being measure of quality of life of the patient.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: August 23, 2022
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Bryan Allen Clark, Elizabeth Mary Annoni, Sandra Nagale, Jeffrey E. Stahmann, Kyle Harish Srivastava, Mark W. Boden, Martin Phelan, George Wilfred Duval
  • Publication number: 20220240856
    Abstract: A medical system for monitoring a left atrial pressure in a heart of a patient may include an implantable device including an expandable framework and a first sensor secured to the expandable framework and an external component configured to communicate wirelessly with the implantable device. The first sensor may be configured to detect a first measurement. The first sensor may be a pressure sensor and the first measurement may be the left atrial pressure. The implantable device or the external component may include a processor configured to create a first trend for the first measurement. The processor may be configured to use the first trend to modify the first measurement prior to outputting a corrected result.
    Type: Application
    Filed: February 2, 2022
    Publication date: August 4, 2022
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Jeffrey E. Stahmann, Bin Mi, Keith R. Maile
  • Publication number: 20220202364
    Abstract: Systems and methods for monitoring patients with a chronic disease such as heart failure are disclosed. The system may include a physiological sensor circuit to sense physiological signals and generate signal metrics from the physiological signals. The system may include a health status analyzer circuit to use the signal metrics to generate one or more stability indicators of patient health status, such as stability of heart failure status. The system may additionally generate one or more health status indicators indicating patient health status such as heart failure progression. A patient disposition decision may be generated using the health status indicators and the stability indicators to provide an indication of readiness for patient discharge from or a risk of admission to a hospital.
    Type: Application
    Filed: March 17, 2022
    Publication date: June 30, 2022
    Inventors: Qi An, Jeffrey E. Stahmann, Pramodsingh Hirasingh Thakur, Viktoria A. Averina, Keith R. Maile