Patents by Inventor Jeffrey P. Bodner

Jeffrey P. Bodner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11925804
    Abstract: A first medical device for obstructive sleep apnea therapy includes therapy delivery circuitry coupled to a first set of electrodes implantable proximate to a first hypoglossal nerve within a tongue of the patient and configured to deliver a first electrical stimulation signal to the first hypoglossal nerve that causes the tongue of the patient to advance and includes information to communicate to a second medical device implantable within the head or neck of the patient and coupled to a second set of electrodes implantable proximate to a second hypoglossal nerve within the tongue of the patient; and sensing circuitry coupled to the first set of electrodes and configured to receive a second electrical stimulation signal, delivered to the second hypoglossal nerve by the second medical device, that includes information that the second medical device communicates to the first medical device.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: March 12, 2024
    Assignee: Medtronic Xomed, LLC
    Inventors: Jeffrey P. Bodner, Avram Scheiner, Phillip C. Falkner, James Britton Hissong, Walton W. Baxter, III, Richard T. Stone, Robert T. Sandgren, Ryan B. Sefkow, Adam J. Rivard
  • Publication number: 20240016440
    Abstract: Use of non-contact patient monitoring systems to detect, diagnose, monitor and/or adjust therapy for diseases or conditions that have motion-based symptoms, symptoms such as limb tremors, spasms, etc. that can be correlated to diseases or conditions such as Essential tremor, Parkinson's disease, restless leg syndrome, or a diabetic episode. Information garnered by the non-contact monitoring system, information such as location, frequency, severity, and duration of the motion, can be collected and analyzed so that a diagnosis can be made and/or a treatment plan developed and/or adjusted by the patient's caretaker. The non-contact monitoring can provide real-time feedback regarding effectiveness of therapies or treatments, such as, e.g., neurological stimulation.
    Type: Application
    Filed: July 14, 2023
    Publication date: January 18, 2024
    Inventors: Thomas I. MILLER, Sajith ANANTHARAMAN, Paul S. ADDISON, Robert T. SANDGREN, Jeffrey P. BODNER, Adam J. RIVARD, Avram SCHEINER, Ryan B. SEFKOW, Ohad COHEN
  • Patent number: 11806541
    Abstract: Systems and methods involve an intrathoracic cardiac stimulation device operable to provide autonomous cardiac sensing and energy delivery. The cardiac stimulation device includes a housing configured for intrathoracic placement relative to a patient's heart. A fixation arrangement of the housing is configured to affix the housing at an implant location within cardiac tissue or cardiac vasculature. An electrode arrangement supported by the housing is configured to sense cardiac activity and deliver stimulation energy to the cardiac tissue or cardiac vasculature. Energy delivery circuitry in the housing is coupled to the electrode arrangement. Detection circuitry is provided in the housing and coupled to the electrode arrangement. Communications circuitry may optionally be supported by the housing. A controller in the housing coordinates delivery of energy to the cardiac tissue or cardiac vasculature in accordance with an energy delivery protocol appropriate for the implant location.
    Type: Grant
    Filed: February 17, 2021
    Date of Patent: November 7, 2023
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Jeffrey P. Bodner, Randy Bierwerth
  • Publication number: 20230310865
    Abstract: A system may generate a waveform signal indicative of a biometric parameter of a target subject based on motion data associated with the target subject. The motion data may be provided by a depth sensing device and be substantially free of image data. The system may set a threshold condition based on one or more characteristics of the waveform signal. The system may output a control signal to a stimulation device based on the waveform signal satisfying the threshold condition.
    Type: Application
    Filed: April 4, 2023
    Publication date: October 5, 2023
    Inventors: Paul S. ADDISON, Adam J. RIVARD, Thomas I. MILLER, Sajith ANANTHARAMAN, Robert T. SANDGREN, Jeffrey P. BODNER, Avram SCHEINER, Ryan B. SEFKOW
  • Publication number: 20230158225
    Abstract: An implantable infusate spread promoting system configured to enable improved dispersion of delivered infusate. The system including an implantable device configured to enable infusate delivery within a body of a patient, and an implantable manually actuatable flushing pump configured to remove and re-inject a quantity of fluid with each actuation to promote improved dispersion of the delivered infusate.
    Type: Application
    Filed: October 5, 2022
    Publication date: May 25, 2023
    Inventors: Touby A. Drew, Jeffrey P. Bodner
  • Publication number: 20230136535
    Abstract: A first medical device for obstructive sleep apnea therapy includes therapy delivery circuitry coupled to a first set of electrodes implantable proximate to a first hypoglossal nerve within a tongue of the patient and configured to deliver a first electrical stimulation signal to the first hypoglossal nerve that causes the tongue of the patient to advance and includes information to communicate to a second medical device implantable within the head or neck of the patient and coupled to a second set of electrodes implantable proximate to a second hypoglossal nerve within the tongue of the patient; and sensing circuitry coupled to the first set of electrodes and configured to receive a second electrical stimulation signal, delivered to the second hypoglossal nerve by the second medical device, that includes information that the second medical device communicates to the first medical device.
    Type: Application
    Filed: November 3, 2021
    Publication date: May 4, 2023
    Inventors: Jeffrey P. Bodner, Avram Scheiner, Phillip C. Falkner, James Britton Hissong, Walton W. Baxter, III, Richard T. Stone, Robert T. Sandgren, Ryan B. Sefkow, Adam J. Rivard
  • Patent number: 11559626
    Abstract: An implantable glymphatic pump configured to flush metabolites from a brain parenchyma of a patient. The implantable glymphatic pump including at least one spinal catheter having a distal end configured to be positioned within an intrathecal space of a spine of a patient, at least one cranial catheter having a distal end configured to be positioned within a brain parenchyma of the patient, and an implantable pump configured to draw cerebrospinal fluid from the intrathecal space of the spine in the patient via the at least one spinal catheter, and reintroduce said cerebrospinal fluid to the brain parenchyma of the patient via the one or more cranial catheters to encourage a flow of the cerebrospinal fluid through the brain parenchyma.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: January 24, 2023
    Assignee: Medtronic, Inc.
    Inventor: Jeffrey P. Bodner
  • Patent number: 11478649
    Abstract: Systems and methods involve an intrathoracic cardiac stimulation device operable to provide autonomous cardiac sensing and energy delivery. The cardiac stimulation device includes a housing configured for intrathoracic placement relative to a patient's heart. A fixation arrangement of the housing is configured to affix the housing at an implant location within cardiac tissue or cardiac vasculature. An electrode arrangement supported by the housing is configured to sense cardiac activity and deliver stimulation energy to the cardiac tissue or cardiac vasculature. Energy delivery circuitry in the housing is coupled to the electrode arrangement. Detection circuitry is provided in the housing and coupled to the electrode arrangement. Communications circuitry may optionally be supported by the housing. A controller in the housing coordinates delivery of energy to the cardiac tissue or cardiac vasculature in accordance with an energy delivery protocol appropriate for the implant location.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: October 25, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Jeffrey P. Bodner, Randy Bierwerth
  • Publication number: 20220257854
    Abstract: A drug delivery system including an implantable reservoir containing drug microspheres, with an innocuous fluid flushed through the implantable microsphere reservoir to form a drug containing solution for delivery within a body of a patient.
    Type: Application
    Filed: January 12, 2022
    Publication date: August 18, 2022
    Inventors: Jeffrey P. Bodner, Touby A. Drew, Nicholas Whitehead, J. Michael Gray
  • Publication number: 20220184298
    Abstract: An implantable medical device configured to monitor fluid in proximity to an implantable medical device for an inadvertent introduction of infusate into a pocket of tissue surrounding the implantable medical device during a refill procedure, the implantable medical device including a refillable infusate delivery system, the refillable infusate delivery system including a reservoir in fluid communication with an access port, and a conductivity sensor configured to monitor fluid in proximity to the conductivity sensor for an introduction of infusate into a pocket of tissue surrounding the implantable medical device, wherein the conductivity sensor comprises a pair of electrodes positioned on an external surface of the implantable medical device.
    Type: Application
    Filed: December 16, 2020
    Publication date: June 16, 2022
    Inventor: Jeffrey P. Bodner
  • Publication number: 20210393968
    Abstract: This disclosure describes devices, systems, and techniques for recharging power sources using RF energy received by one or more antennae. In one example, an implantable medical device includes a rechargeable power supply and an antenna configured to receive radio frequency (RF) energy having one or more frequencies within at least one of a first range from 1 MHz to 20 MHz or a second range from 100 MHz to 700 MHz. The implantable medical device may also include charging circuitry configured to convert the RF energy to a direct current (DC) power and charge the rechargeable power supply with the DC power.
    Type: Application
    Filed: June 17, 2021
    Publication date: December 23, 2021
    Inventors: Robert J. Monson, Andrew T. Fried, Jeffrey P. Bodner, Jonathon E. Giftakis, Venkat R. Gaddam, Jacob P. Komarek
  • Publication number: 20210316069
    Abstract: An implantable glymphatic pump configured to flush metabolites from a brain parenchyma of a patient. The implantable glymphatic pump including at least one spinal catheter having a distal end configured to be positioned within an intrathecal space of a spine of a patient, at least one cranial catheter having a distal end configured to be positioned within a brain parenchyma of the patient, and an implantable pump configured to draw cerebrospinal fluid from the intrathecal space of the spine in the patient via the at least one spinal catheter, and reintroduce said cerebrospinal fluid to the brain parenchyma of the patient via the one or more cranial catheters to encourage a flow of the cerebrospinal fluid through the brain parenchyma.
    Type: Application
    Filed: April 8, 2020
    Publication date: October 14, 2021
    Inventor: Jeffrey P. Bodner
  • Publication number: 20210268236
    Abstract: Anchors for securing a medical device relative to a body portal, wherein the anchors may accommodate most any implantation trajectory through the portal. Such anchors may further secure the device along any such trajectory without imparting undesirable biasing forces that may shift the device from its intended implanted location. In some embodiments, the anchor is configured as a burr hole anchor including a spherical member contained in a socket of the anchor such that orientation of the spherical member is permitted about three mutually perpendicular axes.
    Type: Application
    Filed: May 19, 2021
    Publication date: September 2, 2021
    Inventors: Brian D. Nelson, Jeffrey P. Bodner
  • Publication number: 20210187303
    Abstract: Systems and methods involve an intrathoracic cardiac stimulation device operable to provide autonomous cardiac sensing and energy delivery. The cardiac stimulation device includes a housing configured for intrathoracic placement relative to a patient's heart. A fixation arrangement of the housing is configured to affix the housing at an implant location within cardiac tissue or cardiac vasculature. An electrode arrangement supported by the housing is configured to sense cardiac activity and deliver stimulation energy to the cardiac tissue or cardiac vasculature. Energy delivery circuitry in the housing is coupled to the electrode arrangement. Detection circuitry is provided in the housing and coupled to the electrode arrangement. Communications circuitry may optionally be supported by the housing. A controller in the housing coordinates delivery of energy to the cardiac tissue or cardiac vasculature in accordance with an energy delivery protocol appropriate for the implant location.
    Type: Application
    Filed: February 17, 2021
    Publication date: June 24, 2021
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Jeffrey P. Bodner, Randy Bierwerth
  • Patent number: 11013893
    Abstract: Anchors for securing a medical device relative to a body portal, wherein the anchors may accommodate most any implantation trajectory through the portal. Such anchors may further secure the device along any such trajectory without imparting undesirable biasing forces that may shift the device from its intended implanted location. In some embodiments, the anchor is configured as a burr hole anchor including a spherical member contained in a socket of the anchor such that orientation of the spherical member is permitted about three mutually perpendicular axes.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: May 25, 2021
    Assignee: Medtronic, Inc.
    Inventors: Brian D. Nelson, Jeffrey P. Bodner
  • Patent number: 10946203
    Abstract: Systems and methods involve an intrathoracic cardiac stimulation device operable to provide autonomous cardiac sensing and energy delivery. The cardiac stimulation device includes a housing configured for intrathoracic placement relative to a patient's heart. A fixation arrangement of the housing is configured to affix the housing at an implant location within cardiac tissue or cardiac vasculature. An electrode arrangement supported by the housing is configured to sense cardiac activity and deliver stimulation energy to the cardiac tissue or cardiac vasculature. Energy delivery circuitry in the housing is coupled to the electrode arrangement. Detection circuitry is provided in the housing and coupled to the electrode arrangement. Communications circuitry may optionally be supported by the housing. A controller in the housing coordinates delivery of energy to the cardiac tissue or cardiac vasculature in accordance with an energy delivery protocol appropriate for the implant location.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: March 16, 2021
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Jeffrey P. Bodner, Randy Bierwerth
  • Publication number: 20200246627
    Abstract: Systems and methods involve an intrathoracic cardiac stimulation device operable to provide autonomous cardiac sensing and energy delivery. The cardiac stimulation device includes a housing configured for intrathoracic placement relative to a patient's heart. A fixation arrangement of the housing is configured to affix the housing at an implant location within cardiac tissue or cardiac vasculature. An electrode arrangement supported by the housing is configured to sense cardiac activity and deliver stimulation energy to the cardiac tissue or cardiac vasculature. Energy delivery circuitry in the housing is coupled to the electrode arrangement. Detection circuitry is provided in the housing and coupled to the electrode arrangement. Communications circuitry may optionally be supported by the housing. A controller in the housing coordinates delivery of energy to the cardiac tissue or cardiac vasculature in accordance with an energy delivery protocol appropriate for the implant location.
    Type: Application
    Filed: March 31, 2020
    Publication date: August 6, 2020
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Jeffrey P. Bodner, Randy Bierwerth
  • Patent number: 10639489
    Abstract: Systems and methods involve an intrathoracic cardiac stimulation device operable to provide autonomous cardiac sensing and energy delivery. The cardiac stimulation device includes a housing configured for intrathoracic placement relative to a patient's heart. A fixation arrangement of the housing is configured to affix the housing at an implant location within cardiac tissue or cardiac vasculature. An electrode arrangement supported by the housing is configured to sense cardiac activity and deliver stimulation energy to the cardiac tissue or cardiac vasculature. Energy delivery circuitry in the housing is coupled to the electrode arrangement. Detection circuitry is provided in the housing and coupled to the electrode arrangement. Communications circuitry may optionally be supported by the housing. A controller in the housing coordinates delivery of energy to the cardiac tissue or cardiac vasculature in accordance with an energy delivery protocol appropriate for the implant location.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: May 5, 2020
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Jeffrey P. Bodner, Randy Bierwerth
  • Publication number: 20190184139
    Abstract: Anchors for securing a medical device relative to a body portal, wherein the anchors may accommodate most any implantation trajectory through the portal. Such anchors may further secure the device along any such trajectory without imparting undesirable biasing forces that may shift the device from its intended implanted location. In some embodiments, the anchor is configured as a burr hole anchor including a spherical member contained in a socket of the anchor such that orientation of the spherical member is permitted about three mutually perpendicular axes.
    Type: Application
    Filed: February 20, 2019
    Publication date: June 20, 2019
    Inventors: Brian D. Nelson, Jeffrey P. Bodner
  • Patent number: 10252032
    Abstract: Anchors for securing a medical device relative to a body portal, wherein the anchors may accommodate most any implantation trajectory through the portal. Such anchors may further secure the device along any such trajectory without imparting undesirable biasing forces that may shift the device from its intended implanted location. In some embodiments, the anchor is configured as a burr hole anchor including a spherical member contained in a socket of the anchor such that orientation of the spherical member is permitted about three mutually perpendicular axes.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: April 9, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Brian D. Nelson, Jeffrey P. Bodner