Patents by Inventor Jeffrey Roh

Jeffrey Roh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11112770
    Abstract: Systems and methods for assisting a surgeon with implant during a surgery are disclosed. A method includes defining areas of interest in diagnostic data of a patient and defining an implant type. Post defining the areas of interest, salient points are determined for the areas of interest. Successively, an XZ angle, an XY angle, and a position entry point for an implant are determined based on the salient points of the areas of interest. In spinal procedures, a maximum screw diameter and a length of the spinal screw are successively determined based on the salient points. Based on determined length and diameter, a spinal screw and a matching screw guide is determined. Thereafter, the spinal screw and the screw guide is printed using a Three-Dimensional (3D) printer. Such printed spinal screw and screw guide could be used by the surgeon during the spinal surgery.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: September 7, 2021
    Assignee: Carlsmed, Inc.
    Inventors: Jeffrey Roh, Justin Esterberg
  • Publication number: 20210210189
    Abstract: Systems and methods for designing and implementing patient-specific surgical procedures and/or medical devices are disclosed. In some embodiments, a method includes receiving a patient data set of a patient. The patient data set is compared to a plurality of reference patient data sets, wherein each of the plurality of reference patient data sets is associated with a corresponding reference patient. A subset of the plurality of reference patient data sets is selected based, at least partly, on similarity to the patient data set and treatment outcome of the corresponding reference patient. Based on the selected subset, at least one surgical procedure or medical device design for treating the patient is generated.
    Type: Application
    Filed: December 17, 2020
    Publication date: July 8, 2021
    Inventors: Niall Patrick Casey, Michael J. Cordonnier, Justin Esterberg, Jeffrey Roh
  • Patent number: 11033206
    Abstract: A method is provided which includes providing a sensor operable to measure movement over time on a user. The sensor includes an alert unit. The sensor is configured with a threshold to activate the alert unit when the measured movement over time is below the threshold. The measurements of movement over time are obtained, and it is determined whether the measured movement over time is below the threshold. When the measured movement is below the threshold, the alert unit at the sensor is activated to alert the user.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: June 15, 2021
    Assignee: Circulex, Inc.
    Inventor: Jeffrey Roh
  • Publication number: 20210068975
    Abstract: A multi-portal method for treating a subject's spine includes distracting adjacent vertebrae using a distraction instrument positioned at a first entrance along the subject to enlarge an intervertebral space between the adjacent vertebrae. An interbody fusion implant can be delivered into the enlarged intervertebral space. The interbody fusion implant can be positioned directly between vertebral bodies of the adjacent vertebrae while endoscopically viewing the interbody fusion implant using an endoscopic instrument. The patient's spine can be visualized using endoscopic techniques to view, for example, the spine, tissue, instruments and implants before, during, and after implantation, or the like. The visualization can help a physician throughout the surgical procedure to improve patient outcome.
    Type: Application
    Filed: September 9, 2019
    Publication date: March 11, 2021
    Inventors: Andy Wonyong Choi, Dong-Hwa Heo, Jeffrey Roh
  • Publication number: 20210068863
    Abstract: A multi-portal method for treating a subject's spine includes distracting adjacent vertebrae using a distraction instrument positioned at a first entrance along the subject to enlarge an intervertebral space between the adjacent vertebrae. An interbody fusion implant can be delivered into the enlarged intervertebral space. The interbody fusion implant can be positioned directly between vertebral bodies of the adjacent vertebrae while endoscopically viewing the interbody fusion implant using an endoscopic instrument. The patient's spine can be visualized using endoscopic techniques to view, for example, the spine, tissue, instruments, and implants before, during, and after implantation, or the like. The visualization can help a physician throughout the surgical procedure to improve patient outcome.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 11, 2021
    Inventors: Andy Wonyong Choi, Dong-Hwa Heo, Jeffrey Roh
  • Publication number: 20210059772
    Abstract: This invention is a system and method for utilizing artificial intelligence to operate a surgical robot (e.g., to perform a laminectomy), including a surgical robot, an artificial intelligence guidance system, an image recognition system, an image recognition database, and a database of past procedures with sensor data, electronic medical records, and imaging data. The image recognition system may identify the tissue type present in the patient and if it is the desired tissue type, the AI guidance system may remove a layer of that tissue with the end effector on the surgical robot, and have the surgeon define the tissue type if the image recognition system identified the tissue as anything other than the desired tissue type.
    Type: Application
    Filed: November 13, 2020
    Publication date: March 4, 2021
    Inventors: Jeffrey Roh, Justin Esterberg
  • Patent number: 10902944
    Abstract: Systems and methods for designing and implementing patient-specific surgical procedures and/or medical devices are disclosed. In some embodiments, a method includes receiving a patient data set of a patient. The patient data set is compared to a plurality of reference patient data sets, wherein each of the plurality of reference patient data sets is associated with a corresponding reference patient. A subset of the plurality of reference patient data sets is selected based, at least partly, on similarity to the patient data set and treatment outcome of the corresponding reference patient. Based on the selected subset, at least one surgical procedure or medical device design for treating the patient is generated.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: January 26, 2021
    Assignee: Carlsmed, Inc.
    Inventors: Niall Patrick Casey, Michael J. Cordonnier, Justin Esterberg, Jeffrey Roh
  • Patent number: 10874464
    Abstract: This invention is a system and method for utilizing artificial intelligence to operate a surgical robot (e.g., to perform a laminectomy), including a surgical robot, an artificial intelligence guidance system, an image recognition system, an image recognition database, and a database of past procedures with sensor data, electronic medical records, and imaging data. The image recognition system may identify the tissue type present in the patient and if it is the desired tissue type, the AI guidance system may remove a layer of that tissue with the end effector on the surgical robot, and have the surgeon define the tissue type if the image recognition system identified the tissue as anything other than the desired tissue type.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: December 29, 2020
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Jeffrey Roh, Justin Esterberg
  • Publication number: 20200085509
    Abstract: This invention is a system and method for utilizing artificial intelligence to operate a surgical robot (e.g., to perform a laminectomy), including a surgical robot, an artificial intelligence guidance system, an image recognition system, an image recognition database, and a database of past procedures with sensor data, electronic medical records, and imaging data. The image recognition system may identify the tissue type present in the patient and if it is the desired tissue type, the AI guidance system may remove a layer of that tissue with the end effector on the surgical robot, and have the surgeon define the tissue type if the image recognition system identified the tissue as anything other than the desired tissue type.
    Type: Application
    Filed: September 25, 2019
    Publication date: March 19, 2020
    Inventors: Jeffrey Roh, Justin Esterberg
  • Patent number: 10517681
    Abstract: This invention is a system and method for utilizing artificial intelligence to operate a surgical robot (e.g., to perform a laminectomy), including a surgical robot, an artificial intelligence guidance system, an image recognition system, an image recognition database, and a database of past procedures with sensor data, electronic medical records, and imaging data. The image recognition system may identify the tissue type present in the patient and if it is the desired tissue type, the AI guidance system may remove a layer of that tissue with the end effector on the surgical robot, and have the surgeon define the tissue type if the image recognition system identified the tissue as anything other than the desired tissue type.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: December 31, 2019
    Assignee: NavLAB, Inc.
    Inventors: Jeffrey Roh, Justin Esterberg
  • Publication number: 20190262084
    Abstract: This invention is a system and method for utilizing artificial intelligence to operate a surgical robot (e.g., to perform a laminectomy), including a surgical robot, an artificial intelligence guidance system, an image recognition system, an image recognition database, and a database of past procedures with sensor data, electronic medical records, and imaging data. The image recognition system may identify the tissue type present in the patient and if it is the desired tissue type, the AI guidance system may remove a layer of that tissue with the end effector on the surgical robot, and have the surgeon define the tissue type if the image recognition system identified the tissue as anything other than the desired tissue type.
    Type: Application
    Filed: February 27, 2019
    Publication date: August 29, 2019
    Inventors: Jeffrey Roh, Justin Esterberg
  • Publication number: 20190239973
    Abstract: Systems and methods for providing assistance to a surgeon for minimizing errors during a surgical procedure are disclosed. A method includes creating a Three-Dimensional (3D) model of a patient using at least one image of an affected area of the patient. Surgical paths are retrieved for performing a surgical procedure. A surgical path, selected by a surgeon, may be displayed as overlaid on the 3D model. A haptic barrier and a hard barrier may be defined for different types of tissues and feedbacks may be associated with the haptic barrier and the hard barrier. Position of a surgical tool of a robotic surgical system may be monitored in real-time during a surgical procedure. Movement of the surgical tool into one of the haptic barrier and the hard barrier may be detected and a suitable feedback may be provided, based on the movement.
    Type: Application
    Filed: June 22, 2018
    Publication date: August 8, 2019
    Inventors: Justin Esterberg, Jeffrey Roh
  • Publication number: 20190146458
    Abstract: Systems and methods for assisting a surgeon with implant during a surgery are disclosed. A method includes defining areas of interest in diagnostic data of a patient and defining an implant type. Post defining the areas of interest, salient points are determined for the areas of interest. Successively, an XZ angle, an XY angle, and a position entry point for an implant are determined based on the salient points of the areas of interest. In spinal procedures, a maximum screw diameter and a length of the spinal screw are successively determined based on the salient points. Based on determined length and diameter, a spinal screw and a matching screw guide is determined. Thereafter, the spinal screw and the screw guide is printed using a Three-Dimensional (3D) printer. Such printed spinal screw and screw guide could be used by the surgeon during the spinal surgery.
    Type: Application
    Filed: January 8, 2019
    Publication date: May 16, 2019
    Inventors: Jeffrey Roh, Justin Esterberg
  • Publication number: 20190029757
    Abstract: Systems and methods for providing assistance to a surgeon during an implant surgery are disclosed. A method includes defining areas of interest in diagnostic data of a patient and defining a screw bone type based on the surgeon's input. Post defining the areas of interest, salient points are determined for the areas of interest. Successively, an XZ angle, an XY angle, and a position entry point for a screw are determined based on the salient points of the areas of interest. Successively, a maximum screw diameter and a length of the screw are determined based on the salient points. Thereafter, the screw is identified and suggested to the surgeon for usage during the implant surgery.
    Type: Application
    Filed: July 27, 2018
    Publication date: January 31, 2019
    Inventors: Jeffrey Roh, Justin Esterberg
  • Publication number: 20190035508
    Abstract: Systems and methods for assisting a user in discovering nearby medical services are disclosed. A method includes identifying a user based on matching of at least one unique identity or biometric details of the user with data stored in a database. Details of an event data may be received from the user. A current geographical location of the user may be determined. Relevant support network data may be identified based on the event data and the current geographical location of the user. The support network data may include data related to pharmacies, doctors, hospitals, clinics, third parties, insurance, and payment agents. Thereafter, the relevant support network data may be presented to the user in form of an event map. The event map may include details related to the event data and the user preferences.
    Type: Application
    Filed: July 30, 2018
    Publication date: January 31, 2019
    Inventor: Jeffrey Roh
  • Publication number: 20190013099
    Abstract: The presentation of relevant data to users during a surgical procedure is disclosed. A system may include a plurality of displays present in an operating room. A medical personnel database may store data related to roles of users. A role gesture database may store gestures that may be made to store and retrieve data during the surgical procedure, based on respective roles of the users. A display tracking module may identify locations of the plurality of displays present in the operating room. A user tracking module may identify locations of the users and the occurrence of corresponding gestures of the users present in the operating room, to determine an identity of the user present in proximity to a display of the plurality of displays, and to display data related to the identity of the user based on a gesture during the surgical procedure.
    Type: Application
    Filed: July 6, 2018
    Publication date: January 10, 2019
    Inventors: Justin Esterberg, Jeffrey Roh
  • Publication number: 20190000570
    Abstract: A robotic surgical system may be used to perform a surgical procedure. Providing guidance for the robotic surgical system includes integrating a Point of View (PoV) surgical drill with a camera to capture a PoV image of a surgical area of a subject patient; displaying an image of the surgical area, based on a viewing angle of the PoV surgical drill, thus enabling the surgeon to operate on the surgical area using the PoV surgical drill. The PoV surgical drill operates based on the surgeon's control of a guidance drill. The content of the images may change based on a change in the viewing angle of the PoV surgical drill.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 3, 2019
    Inventors: Justin Esterberg, Jeffrey Roh
  • Publication number: 20180368930
    Abstract: Systems and methods for providing assistance to a surgeon for minimizing errors during a surgical procedure are disclosed. A method includes creating a Three-Dimensional (3D) model of a patient using at least one image of an affected area of the patient. Surgical paths are retrieved for performing a surgical procedure. A surgical path, selected by a surgeon, may be displayed as overlaid on the 3D model. A haptic barrier and a hard barrier may be defined for different types of tissues and feedbacks may be associated with the haptic barrier and the hard barrier. Position of a surgical tool of a robotic surgical system may be monitored in real-time during a surgical procedure. Movement of the surgical tool into one of the haptic barrier and the hard barrier may be detected and a suitable feedback may be provided, based on the movement.
    Type: Application
    Filed: June 22, 2018
    Publication date: December 27, 2018
    Inventors: Justin Esterberg, Jeffrey Roh
  • Publication number: 20180360543
    Abstract: Technologies for providing assistance to a surgeon during a surgical procedure are disclosed. An example method includes identifying a medical condition of a patient and recommending surgical procedures for treatment. An optimal surgical procedure is then determined based on correlations between the medical condition of the patient and outcomes of previous surgical procedures for other patients previously suffering from the medical condition. A 3D model of the patient may be created using current images of an affected area of the patient. Successively, a surgeon is trained using a Virtual Reality simulation. During the training, the surgeon may be allowed to provide annotations. Further, the recommended surgical procedures are based on medical data of the patient, including medical images. Surgical paths are retrieved for addressing the surgical need of the patient, and the surgical paths may be overlaid on image segments, for display for the surgeon.
    Type: Application
    Filed: June 19, 2018
    Publication date: December 20, 2018
    Inventors: Jeffrey Roh, Justin Esterberg
  • Publication number: 20170347923
    Abstract: A method is provided which includes providing a sensor operable to measure movement over time on a user. The sensor includes an alert unit. The sensor is configured with a threshold to activate the alert unit when the measured movement over time is below the threshold. The measurements of movement over time are obtained, and it is determined whether the measured movement over time is below the threshold. When the measured movement is below the threshold, the alert unit at the sensor is activated to alert the user.
    Type: Application
    Filed: June 2, 2017
    Publication date: December 7, 2017
    Inventor: Jeffrey Roh