Patents by Inventor Jeffrey Sandstrom

Jeffrey Sandstrom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11571302
    Abstract: The disclosure relates to transcatheter stented prosthesis delivery devices including transition elements that route, constrain, support and reduce damage to tension member wear as tension in the tension members is varied to adjust the compression of a stented prosthesis loaded onto the delivery device. Various disclosed tension elements include inserts, edge treatments and guides proximate a distal portion of the delivery device upon which the stented prosthesis is loaded. In some embodiments, the transition feature is positioned proximate a location where at least one tension member transitions from a first orientation that is not parallel to the distal portion to a second orientation that is generally parallel to the distal portion. Further embodiments disclose configurations and methods of selectively locking and unlocking a longitudinal and/or rotational position of the stent frame with respect to the distal portion of the delivery device.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: February 7, 2023
    Assignee: MEDTRONIC, INC.
    Inventors: Michael Gloss, Patrick Griffin, Paul Rothstein, Jeffrey Sandstrom, Brendan Vaughan, Stephen Montgomery, Alan McGuinn
  • Patent number: 11504236
    Abstract: A delivery device for percutaneously delivering a stented prosthetic heart includes a sheath, a handle, and adjustment device including a fine adjustment mechanism, and an outer stability shaft. The sheath defines a lumen and is configured to compressively constrain the stented prosthetic heart valve. The handle is coupled to the proximal portion of the sheath and includes an actuator mechanism coupled to a proximal portion of the sheath that is configured to selectively move the sheath relative to the housing to release the stented prosthetic heat valve. The adjustment device is coupled to the handle and includes an adjustment lumen through which the sheath and the handle slidably extend. The outer stability shaft is coupled to the adjustment device. The fine adjustment mechanism is configured to selectively move the handle and the sheath relative to the adjustment device and the outer stability shaft.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: November 22, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventors: Jeffrey Sandstrom, Brendan Vaughan
  • Publication number: 20220338986
    Abstract: A delivery device for percutaneously delivering a stented prosthetic heart valve includes a capsule assembly, a handle, and an outer stability shaft. The capsule assembly includes a capsule and a proximal shaft coupled to the capsule. The capsule includes an expanded configuration wherein the capsule has a first outer diameter, and a collapsed configuration wherein the capsule has a second outer diameter smaller than the first outer diameter. The outer stability shaft defines a lumen and is coupled to the handle and configured to receive the proximal shaft within the lumen of the outer stability shaft. The outer stability shaft has an inner diameter, wherein the first outer diameter of the capsule is greater than the inner diameter of the outer stability shaft and the second outer diameter of the capsule is smaller than the inner diameter of the outer stability shaft.
    Type: Application
    Filed: June 27, 2022
    Publication date: October 27, 2022
    Inventors: Joel RACCHINI, Jeffrey SANDSTROM
  • Publication number: 20220287839
    Abstract: A medical system includes a catheter navigable through vasculature of patient to introduce a valve clip configured to join the edges of heart valve leaflets. The valve clip includes a deformable wire configured to engage valve leaflets, the wire extending from a first wire portion to a second wire portion. The catheter includes a handle having control members, an elongate body defining a lumen extending from the handle to a distal opening, and first and second delivery devices operatively coupled to a control member and extending through the lumen to the distal opening. Each delivery device is configured to releasably couple to a portion of the wire and moveable relative to the distal opening. The delivery devices are controllable at the handle to move the valve clip between an extended configuration and a contracted configuration to engage the valve leaflets.
    Type: Application
    Filed: August 4, 2020
    Publication date: September 15, 2022
    Inventors: Matthew E. Genovese, Vania Lee, Russell Pribanic, Thomas J. McPeak, Jeffrey Sandstrom, Dermot O'Brien, James Calvin Allan
  • Publication number: 20220273956
    Abstract: An implantable medical device system is configured to generate signals and deliver the signals to a heart of a patient. The implantable medical device system includes electronic circuitry configured to deliver cardiac pacing, couplings for an implantable medical lead receptacle, at least some of the couplings electrically connected with the electronic circuitry, a polymeric enclosure having the electronic circuitry contained therein, the polymeric enclosure formed of polymeric material filled around the electronic circuitry and couplings and forming the implantable medical lead receptacle. The implantable medical device may include a first cavity filled with a first material and a second cavity filled with a second material, and the first material is different than the second material.
    Type: Application
    Filed: February 1, 2022
    Publication date: September 1, 2022
    Inventors: Matthew D. Bonner, Pradipta K. Das, Allan E. Dienes, Jeffrey Sandstrom, Jeffrey S. Voss
  • Patent number: 11399938
    Abstract: A delivery device for percutaneously delivering a stented prosthetic heart valve includes a capsule assembly, a handle, and an outer stability shaft. The capsule assembly includes a capsule and a proximal shaft coupled to the capsule. The capsule includes an expanded configuration wherein the capsule has a first outer diameter, and a collapsed configuration wherein the capsule has a second outer diameter smaller than the first outer diameter. The outer stability shaft defines a lumen and is coupled to the handle and configured to receive the proximal shaft within the lumen of the outer stability shaft. The outer stability shaft has an inner diameter, wherein the first outer diameter of the capsule is greater than the inner diameter of the outer stability shaft and the second outer diameter of the capsule is smaller than the inner diameter of the outer stability shaft.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: August 2, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: Joel Racchini, Jeffrey Sandstrom
  • Patent number: 11395737
    Abstract: The present disclosure relates to numerous devices and methods for transcatheter stented prosthetic heart valve loading and delivery. Such devices and methods reduce suture tangling and also provide the ability to adjust the stented prosthetic heart valve expansion and contraction prior to the final release of the stented prosthetic heart valve from the delivery device.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: July 26, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventors: Martha Barajas-Torres, Kevin Mauch, Jeffrey Sandstrom, Jill Mendelson, Don Tran
  • Publication number: 20220175524
    Abstract: Methods for rotationally aligning transcatheter heart valve prosthesis within a native heart valve include percutaneously delivering the transcatheter heart valve prosthesis to the native heart valve, wherein the transcatheter heart valve prosthesis includes at least one imaging marker, receiving a cusp overlap viewing angle image and/or a coronary overlap viewing angle image of the transcatheter heart valve prosthesis within the native heart valve, determining, based on the cusp overlap viewing angle image and/or the coronary overlap viewing angle image and the at least one imaging marker, whether the transcatheter heart valve prosthesis is in a desired rotational orientation, if the at least one imaging marker in the cusp overlap viewing angle image and/or the coronary overlap viewing angle indicates that the transcatheter heart valve prosthesis is not in the desired rotational orientation, rotating the transcatheter heart valve prosthesis until the transcatheter heart valve prosthesis is in the desired rot
    Type: Application
    Filed: December 6, 2021
    Publication date: June 9, 2022
    Inventors: Frank Harewood, Taylor Winters, Evelyn Birmingham, Sara Saul, Victor Kimball, Eric Pierce, Radhika Bhargava, Jeffrey Sandstrom, Caitlin Dorff
  • Publication number: 20220175528
    Abstract: Embodiments hereof relate to a delivery system for a transcatheter valve prosthesis, the delivery system having an integral centering mechanism to circumferentially center both the delivery system and the valve prosthesis within a vessel at the target implantation site. The centering mechanism may include expandable wings that may be selectively aligned with openings formed through a sidewall of an outer shaft of the delivery system, a coiled wing that may be selectively exposed through an opening formed through a sidewall of an outer shaft of the delivery system, a plurality of elongated filaments extending through a plurality of lumens of an outermost shaft of the delivery system that may be selectively deployed or expanded, an outer shaft that includes at least one pre-formed deflection segment formed thereon, a tool having a deployable lever arm, and/or a plurality of loops deployable via simultaneous longitudinal and rotational movement.
    Type: Application
    Filed: February 18, 2022
    Publication date: June 9, 2022
    Inventors: Sarah AHLBERG, Marc ANDERSON, Donna BARRETT, Evelyn BIRMINGHAM, Constantin CIOBANU, Kieran CUNNINGHAM, Paul DEVEREUX, Niall DUFFY, John GALLAGHER, Patrick GRIFFIN, Frank HAREWOOD, Gerry MCCAFFREY, DEIRDRE MCGOWAN SMYTH, Bernard MULVIHILL, Herinaina Rabarimanantsoa JAMOUS, Joel RACCHINI, Jeffrey SANDSTROM, Frank WHITE
  • Patent number: 11278407
    Abstract: Embodiments hereof relate to a delivery system for a transcatheter valve prosthesis, the delivery system having an integral centering mechanism to circumferentially center both the delivery system and the valve prosthesis within a vessel at the target implantation site. The centering mechanism may include expandable wings that may be selectively aligned with openings formed through a sidewall of an outer shaft of the delivery system, a coiled wing that may be selectively exposed through an opening formed through a sidewall of an outer shaft of the delivery system, a plurality of elongated filaments extending through a plurality of lumens of an outermost shaft of the delivery system that may be selectively deployed or expanded, an outer shaft that includes at least one pre-formed deflection segment formed thereon, a tool having a deployable lever arm, and/or a plurality of loops deployable via simultaneous longitudinal and rotational movement.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: March 22, 2022
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Joel Racchini, Jeffrey Sandstrom
  • Publication number: 20220054266
    Abstract: Heart valve prosthesis are disclosed that include a frame or support structure having an inflow portion, a valve-retaining tubular or central portion and a pair of support arms. The inflow portion radially extends from a first end of the valve-retaining tubular portion and the pair of support arms are circumferentially spaced apart and radially extend from an opposing second end of the valve-retaining tubular portion.
    Type: Application
    Filed: September 2, 2021
    Publication date: February 24, 2022
    Inventors: Igor KOVALSKY, Cathleen BERGIN, Marian CREAVEN, Joshua DWORK, Kshitija GARDE, Daniel GLOZMAN, Ilia HARITON, Pham LO, Jason QUILL, Jeffrey SANDSTROM, Padraig SAVAGE, Michael SCHENDEL, Elizabeth SCHOTZKO, Yossi TUVAL, Nadav YELLIN
  • Publication number: 20210290390
    Abstract: A system for treating valvular regurgitation in a heart valve includes a flexible canopy and an elongated tether including an elastic portion and an inelastic portion. When the system is in a deployed configuration, a proximal end of the flexible canopy is coupled to an annulus of the heart valve and a distal end of the elongated tether is coupled to a ventricle. The flexible canopy is configured to overlay a first native leaflet of the heart valve, and tension on the elongated tether is applied and/or adjusted to prevent the first leaflet from prolapsing, to maximize coaptation of the flexible canopy with a second native leaflet of the heart valve, and to minimize regurgitation of the heart valve.
    Type: Application
    Filed: June 4, 2021
    Publication date: September 23, 2021
    Inventors: Matthew GENOVESE, Jeffrey SANDSTROM, Russell PRIBANIC, Thomas MCPEAK, Vania LEE, Dermot O'BRIEN, James Calvin ALLAN
  • Publication number: 20210251754
    Abstract: A catheter-based system for percutaneously supporting and articulating a septal wall of a heart includes a catheter and a flanged device. The flanged device includes a distal anchor and a proximal anchor, and has a radially collapsed configuration and a radially expanded configuration. When the flanged device is in the radially expanded configuration and disposed through a transseptal puncture in the septal wall, the flanged device is configured to anchor to the septal wall to permit manipulation thereof whereby an angle between an axis through the transseptal puncture and an axis through a native valve is reduced. The proximal anchor and the distal anchor may each be self-expanding or balloon expandable. The flanged device may further include a flanged device shaft. The flanged device shaft may be releasably coupled to the catheter.
    Type: Application
    Filed: May 4, 2021
    Publication date: August 19, 2021
    Inventors: Niall Duffy, Jeffrey Sandstrom, James R. Keogh
  • Publication number: 20210177593
    Abstract: A system for replacing a heart valve of a patient. The system includes a delivery device and a prosthetic heart valve. The system is configured to be transitionable between a loaded state, a partially deployed state and a deployed state. In the loaded state, the prosthetic heart valve engages a coupling structure and is compressively retained within a primary capsule, which constrains the prosthetic heart valve in a compressed arrangement. In the partially deployed state, the prosthetic heart valve engages the coupling structure and is compressively retained within a secondary capsule, which constrains the prosthetic heart valve to a partially deployed arrangement. The partially deployed arrangement is less compressed than the compressed arrangement and less expanded than a deployed arrangement. In the deployed state, the primary and secondary capsules are retracted from over the prosthetic heart valve, which expands to the deployed arrangement and is released from the coupling structure.
    Type: Application
    Filed: February 5, 2021
    Publication date: June 17, 2021
    Applicant: Medtronic, Inc.
    Inventors: Joel Racchini, Paul Rothstein, Jeffrey Sandstrom
  • Patent number: 11026791
    Abstract: A system for treating valvular regurgitation in a heart valve includes a flexible canopy and an elongated tether including an elastic portion and an inelastic portion. When the system is in a deployed configuration, a proximal end of the flexible canopy is coupled to an annulus of the heart valve and a distal end of the elongated tether is coupled to a ventricle. The flexible canopy is configured to overlay a first native leaflet of the heart valve, and tension on the elongated tether is applied and/or adjusted to prevent the first leaflet from prolapsing, to maximize coaptation of the flexible canopy with a second native leaflet of the heart valve, and to minimize regurgitation of the heart valve.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: June 8, 2021
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Matthew Genovese, Jeffrey Sandstrom, Russell Pribanic, Thomas Mcpeak, Vania Lee, Dermot O'Brien, James Calvin Allan
  • Patent number: 10993807
    Abstract: A catheter-based system for percutaneously supporting and articulating a septal wall of a heart includes a catheter and a flanged device. The flanged device includes a distal anchor and a proximal anchor, and has a radially collapsed configuration and a radially expanded configuration. When the flanged device is in the radially expanded configuration and disposed through a transseptal puncture in the septal wall, the flanged device is configured to anchor to the septal wall to permit manipulation thereof whereby an angle between an axis through the transseptal puncture and an axis through a native valve is reduced. The proximal anchor and the distal anchor may each be self-expanding or balloon expandable. The flanged device may further include a flanged device shaft. The flanged device shaft may be releasably coupled to the catheter.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: May 4, 2021
    Assignee: Medtronic Vascular, Inc.
    Inventors: Niall Duffy, Jeffrey Sandstrom, James R. Keogh
  • Publication number: 20210085455
    Abstract: Stented prosthetic heart valves comprising a stent frame having a compressed arrangement for delivery within a patient's vasculature and an expanded arrangement for deployment within a native heart valve. The stented prosthetic heart valves including a paravalvular leakage prevention or mitigation wrap that encircles a stent frame and is formed of a flexible material having a variable diameter defined by a greatest distance between the wrap and the stent frame. The wrap further includes a first end coupled to the stent frame and an opposing second end that is not coupled to the stent frame, wherein the wrap can selectively enlarge its diameter in situ via movement of the second end. Devices for and methods of selectively deploying the wrap are also disclosed.
    Type: Application
    Filed: December 9, 2020
    Publication date: March 25, 2021
    Applicant: Medtronic Vascular, Inc.
    Inventors: Michael Bateman, Cynthia Clague, Jeffrey Sandstrom, Joel Racchini, James R. Keogh
  • Publication number: 20210077258
    Abstract: A heart valve therapy system including a delivery device and a stented valve. The delivery device includes an outer sheath, an inner shaft, an optional hub assembly, and a plurality of tethers. In a delivery state, a stent frame of the prosthesis is crimped over the inner shaft and maintained in a compressed condition by the outer sheath. The tethers are connected to the stent frame. In a partial deployment state, the outer sheath is at least partially withdrawn, allowing the stent frame to self-expand. Tension in the tethers prevents the stent frame from rapidly expanding and optionally allowing recapture. Upon completion of the stent frame expansion, the tethers are withdrawn.
    Type: Application
    Filed: December 1, 2020
    Publication date: March 18, 2021
    Applicant: Medtronic Vascular Galway
    Inventors: Marian Creaven, Marc Anderson, Kate Corish, Declan Costello, Niall Duffy, Joshua Dwork, John Gallagher, Patrick Griffin, Gavin Kenny, Deirdre McGowan Smyth, John Milroy, Jason Quill, Herinaina Rabarimanantsoa Jamous, Paul Rothstein, Jeffrey Sandstrom, Edmond Sheahan, Frank White
  • Patent number: 10945840
    Abstract: A system for replacing a heart valve of a patient. The system includes a delivery device and a prosthetic heart valve. The system is configured to be transitionable between a loaded state, a partially deployed state and a deployed state. In the loaded state, the prosthetic heart valve engages a coupling structure and is compressively retained within a primary capsule, which constrains the prosthetic heart valve in a compressed arrangement. In the partially deployed state, the prosthetic heart valve engages the coupling structure and is compressively retained within a secondary capsule, which constrains the prosthetic heart valve to a partially deployed arrangement. The partially deployed arrangement is less compressed than the compressed arrangement and less expanded than a deployed arrangement. In the deployed state, the primary and secondary capsules are retracted from over the prosthetic heart valve, which expands to the deployed arrangement and is released from the coupling structure.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: March 16, 2021
    Assignee: Medtronic, Inc.
    Inventors: Joel Racchini, Paul Rothstein, Jeffrey Sandstrom
  • Patent number: 10888420
    Abstract: Stented prosthetic heart valves comprising a stent frame having a compressed arrangement for delivery within a patient's vasculature and an expanded arrangement for deployment within a native heart valve. The stented prosthetic heart valves including a paravalvular leakage prevention or mitigation wrap that encircles a stent frame and is formed of a flexible material having a variable diameter defined by a greatest distance between the wrap and the stent frame. The wrap further includes a first end coupled to the stent frame and an opposing second end that is not coupled to the stent frame, wherein the wrap can selectively enlarge its diameter in situ via movement of the second end. Devices for and methods of selectively deploying the wrap are also disclosed.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: January 12, 2021
    Assignee: Medtronic Vascular, Inc.
    Inventors: Michael Bateman, Cynthia Clague, Jeffrey Sandstrom, Joel Racchini, James R. Keogh