Patents by Inventor Jeffrey Sandstrom

Jeffrey Sandstrom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200405481
    Abstract: An integrated valve prosthesis includes an anchor stent, a tether component, and a valve component. The anchor stent includes a self-expanding tubular frame member configured to be deployed in the annulus of an aortic valve or the aorta. The valve component includes a valve frame and a prosthetic valve coupled to the valve frame, and is configured to be deployed within the anchor stent. The tether component includes a first end coupled to the anchor stent and a second end coupled to the valve frame. In the delivery configuration, the tether component extends in a first direction from the anchor stent to the valve component, and in the deployed configuration, the tether component extends in a second direction from the anchor stent to the valve component. The second direction is generally opposite the first direction. The tether component may set the location of the valve component relative to the anchor stent.
    Type: Application
    Filed: September 10, 2020
    Publication date: December 31, 2020
    Inventors: Paul Rothstein, Jeffrey Sandstrom, Geoffrey Orth
  • Publication number: 20200405469
    Abstract: Methods for providing embolic protection include embolic protection devices having magnets for deploying embolic protection devices, coupling embolic protection devices together, and/or retrieving embolic protection devices.
    Type: Application
    Filed: September 9, 2020
    Publication date: December 31, 2020
    Inventors: Elizabeth SCHOTZKO, Joel RACCHINI, Jeffrey SANDSTROM
  • Patent number: 10869761
    Abstract: A heart valve therapy system including a delivery device and a stented valve. The delivery device includes an outer sheath, an inner shaft, an optional hub assembly, and a plurality of tethers. In a delivery state, a stent frame of the prosthesis is crimped over the inner shaft and maintained in a compressed condition by the outer sheath. The tethers are connected to the stent frame. In a partial deployment state, the outer sheath is at least partially withdrawn, allowing the stent frame to self-expand. Tension in the tethers prevents the stent frame from rapidly expanding and optionally allowing recapture. Upon completion of the stent frame expansion, the tethers are withdrawn.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: December 22, 2020
    Assignee: Medtronic Vascular Galway
    Inventors: Marian Creaven, Marc Anderson, Kate Corish, Declan Costello, Niall Duffy, Joshua Dwork, John Gallagher, Patrick Griffin, Gavin Kenny, Deirdre McGowan Smyth, John Milroy, Jason Quill, Herinaina Rabarimanantsoa Jamous, Paul Rothstein, Jeffrey Sandstrom, Edmond Sheahan, Frank White
  • Publication number: 20200375770
    Abstract: The present disclosure relates to delivery devices for transcatheter stented prosthesis loading, delivery and implantation. The delivery devices provide a loaded delivery state in which the stented prosthesis is loaded and compressed over the delivery device. The compression of the stented prosthesis can be adjusted with one or more elongate tension members, which extend around the stented prosthesis and proximately to an actuation and release assembly that can be provided as part of a handle assembly. The delivery device can be manipulated to adjust tension in the tension members to permit the stented prosthesis to compress, self-expand, and ultimately release from the shaft assembly. In some embodiments, the tension in one or more tension members is adjusted with one or more actuation and release assemblies.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Applicant: Medtronic, Inc.
    Inventors: Michael Gloss, Patrick Griffin, Jeffrey Sandstrom, David O'Toole, Rishi Manda, Niall Duffy
  • Publication number: 20200360142
    Abstract: A delivery device for percutaneously delivering a stented prosthetic heart includes a sheath, a handle, and adjustment device including a fine adjustment mechanism, and an outer stability shaft. The sheath defines a lumen and is configured to compressively constrain the stented prosthetic heart valve. The handle is coupled to the proximal portion of the sheath and includes an actuator mechanism coupled to a proximal portion of the sheath that is configured to selectively move the sheath relative to the housing to release the stented prosthetic heat valve. The adjustment device is coupled to the handle and includes an adjustment lumen through which the sheath and the handle slidably extend. The outer stability shaft is coupled to the adjustment device. The fine adjustment mechanism is configured to selectively move the handle and the sheath relative to the adjustment device and the outer stability shaft.
    Type: Application
    Filed: July 31, 2020
    Publication date: November 19, 2020
    Inventor: Jeffrey Sandstrom
  • Publication number: 20200345490
    Abstract: Delivery devices for a stented prosthetic heart valve. The delivery device includes a spindle, at least one cord, and a lateral control feature. The cord is tensioned to crimp the prosthesis to a compressed condition for delivery to a target site. Tension is lessened to allow the prosthesis to self-expand. In a tethered and expanded state in which the prosthesis has self-expanded and is connected to the spindle by the cord, the lateral control feature directs the spindle to a prescribed location relative to the prosthesis appropriate for a functional evaluation of the prosthesis. In some embodiments, the spindle is directed to a center of the prosthesis; in other embodiments, the spindle is held at a commissure of the prosthesis. The lateral control features of the present disclosure assume numerous forms.
    Type: Application
    Filed: July 21, 2020
    Publication date: November 5, 2020
    Applicant: Medtronic Vascular, Inc.
    Inventors: Jill Mendelson, Michele Silver, Michael Gloss, Timothy Groen, Paul Rothstein, Jeffrey Sandstrom, Phil Haarstad, Joel Racchini, David Blaeser
  • Patent number: 10813755
    Abstract: The disclosure relates to transcatheter stented prosthesis delivery devices including transition elements that route, constrain, support and reduce damage to tension member wear as tension in the tension members is varied to adjust the compression of a stented prosthesis loaded onto the delivery device. Various disclosed tension elements include inserts, edge treatments and guides proximate a distal portion of the delivery device upon which the stented prosthesis is loaded. In some embodiments, the transition feature is positioned proximate a location where at least one tension member transitions from a first orientation that is not parallel to the distal portion to a second orientation that is generally parallel to the distal portion. Further embodiments disclose configurations and methods of selectively locking and unlocking a longitudinal and/or rotational position of the stent frame with respect to the distal portion of the delivery device.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: October 27, 2020
    Assignee: Medtronic, Inc.
    Inventors: Michael Gloss, Patrick Griffin, Paul Rothstein, Jeffrey Sandstrom, Brendan Vaughan, Stephen Montgomery, Alan McGuinn
  • Patent number: 10813740
    Abstract: An embolic protection device includes a shaft, a first magnet fixedly coupled to a distal portion of the shaft, a second magnet slidingly coupled to the shaft proximal to the first magnet, and a filter including a distal portion coupled to the first magnet and a proximal portion coupled to the second magnet. The first and second magnets are magnetically attracted to each other such that in a radially compressed configuration of the filter, the second magnet is spaced from the first magnet a first distance, and in a radially expanded configuration of the filter, the second magnet slides towards the first magnet such that the second magnet is spaced a second distance from the first magnet, wherein the second distance is smaller than the first distance.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: October 27, 2020
    Assignee: Medtronic, Inc.
    Inventors: Elizabeth Schotzko, Joel Racchini, Jeffrey Sandstrom
  • Publication number: 20200323636
    Abstract: The disclosure relates to transcatheter stented prosthesis delivery devices including transition elements that route, constrain, support and reduce damage to tension member wear as tension in the tension members is varied to adjust the compression of a stented prosthesis loaded onto the delivery device. Various disclosed tension elements include inserts, edge treatments and guides proximate a distal portion of the delivery device upon which the stented prosthesis is loaded. In some embodiments, the transition feature is positioned proximate a location where at least one tension member transitions from a first orientation that is not parallel to the distal portion to a second orientation that is generally parallel to the distal portion. Further embodiments disclose configurations and methods of selectively locking and unlocking a longitudinal and/or rotational position of the stent frame with respect to the distal portion of the delivery device.
    Type: Application
    Filed: June 25, 2020
    Publication date: October 15, 2020
    Applicant: Medtronic, Inc.
    Inventors: Michael Gloss, Patrick Griffin, Paul Rothstein, Jeffrey Sandstrom, Brendan Vaughan, Stephen Montgomery, Alan McGuinn
  • Patent number: 10799343
    Abstract: An integrated valve prosthesis includes an anchor stent, a tether component, and a valve component. The anchor stent includes a self-expanding tubular frame member configured to be deployed in the annulus of an aortic valve or the aorta. The valve component includes a valve frame and a prosthetic valve coupled to the valve frame, and is configured to be deployed within the anchor stent. The tether component includes a first end coupled to the anchor stent and a second end coupled to the valve frame. In the delivery configuration, the tether component extends in a first direction from the anchor stent to the valve component, and in the deployed configuration, the tether component extends in a second direction from the anchor stent to the valve component. The second direction is generally opposite the first direction. The tether component may set the location of the valve component relative to the anchor stent.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: October 13, 2020
    Assignee: Medtronic, Inc.
    Inventors: Paul Rothstein, Jeffrey Sandstrom, Geoffrey Orth
  • Publication number: 20200297483
    Abstract: Prosthetic heart valve devices, heart valve replacement systems and associated methods for percutaneous heart valve replacement are disclosed herein. A transcatheter heart valve prosthesis configured in accordance herewith includes an expandable frame having a plurality of commissure posts extending therefrom, a radially expandable inflow member attached to the plurality of commissure posts, and a locking mechanism operably coupled to a wire. The wire is at least partially slideably disposed within a channel formed in a wall of the inflow member and the locking mechanism is configured to permit the wire to be advanced within the channel to thereby transition the inflow member into a deployed configuration that at least partially engages tissue at the native heart valve.
    Type: Application
    Filed: May 19, 2020
    Publication date: September 24, 2020
    Inventors: Paul ROTHSTEIN, Jeffrey SANDSTROM
  • Publication number: 20200289262
    Abstract: A transcatheter valve prosthesis includes an expandable tubular stent, a prosthetic valve within the stent, and an anti-paravalvular leakage component coupled to and encircling the tubular stent. The anti-paravalvular leakage component includes a radially-compressible annular scaffold, which is a sinusoidal patterned ring of self-expanding material, and an impermeable membrane extending over the annular scaffold. The anti-paravalvular leakage component has an expanded configuration in which at least segments of the annular scaffold curve radially away from the tubular stent. Alternatively, the anti-paravalvular leakage component includes a plurality of self-expanding segments and an annular sealing element coupled to inner surfaces of the segments. The anti-paravalvular leakage component has an expanded configuration in which the segments curve radially away from the tubular stent and the annular sealing element is positioned between an outer surface of the tubular stent and inner surfaces of the segments.
    Type: Application
    Filed: June 3, 2020
    Publication date: September 17, 2020
    Inventors: Kshitija GARDE, Joel RACCHINI, Paul ROTHSTEIN, Jeffrey SANDSTROM
  • Patent number: 10772749
    Abstract: The present disclosure relates to delivery devices for transcatheter stented prosthesis loading, delivery and implantation. The delivery devices provide a loaded delivery state in which the stented prosthesis is loaded and compressed over the delivery device. The compression of the stented prosthesis can be adjusted with one or more elongate tension members, which extend around the stented prosthesis and proximately to an actuation and release assembly that can be provided as part of a handle assembly. The delivery device can be manipulated to adjust tension in the tension members to permit the stented prosthesis to compress, self-expand, and ultimately release from the shaft assembly. In some embodiments, the tension in one or more tension members is adjusted with one or more actuation and release assemblies.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: September 15, 2020
    Assignee: Medtronic, Inc.
    Inventors: Michael Gloss, Patrick Griffin, Jeffrey Sandstrom, David O'Toole, Rishi Manda, Niall Duffy
  • Patent number: 10765513
    Abstract: Delivery devices for a stented prosthetic heart valve. The delivery device includes a spindle, at least one cord, and a lateral control feature. The cord is tensioned to crimp the prosthesis to a compressed condition for delivery to a target site. Tension is lessened to allow the prosthesis to self-expand. In a tethered and expanded state in which the prosthesis has self-expanded and is connected to the spindle by the cord, the lateral control feature directs the spindle to a prescribed location relative to the prosthesis appropriate for a functional evaluation of the prosthesis. In some embodiments, the spindle is directed to a center of the prosthesis; in other embodiments, the spindle is held at a commissure of the prosthesis. The lateral control features of the present disclosure assume numerous forms.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: September 8, 2020
    Assignee: Medtronic Vascular, Inc.
    Inventors: Jill Mendelson, Michele Silver, Michael Gloss, Timothy Groen, Paul Rothstein, Jeffrey Sandstrom, Phil Haarstad, Joel Racchini, David Blaeser
  • Patent number: 10758349
    Abstract: A delivery device for percutaneously delivering a stented prosthetic heart includes a sheath, a handle, and adjustment device including a fine adjustment mechanism, and an outer stability shaft. The sheath defines a lumen and is configured to compressively constrain the stented prosthetic heart valve. The handle is coupled to the proximal portion of the sheath and includes an actuator mechanism coupled to a proximal portion of the sheath that is configured to selectively move the sheath relative to the housing to release the stented prosthetic heat valve. The adjustment device is coupled to the handle and includes an adjustment lumen through which the sheath and the handle slidably extend. The outer stability shaft is coupled to the adjustment device. The fine adjustment mechanism is configured to selectively move the handle and the sheath relative to the adjustment device and the outer stability shaft.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: September 1, 2020
    Assignee: Medtronic Vascular, Inc.
    Inventor: Jeffrey Sandstrom
  • Patent number: 10743990
    Abstract: The disclosure relates to transcatheter stented prosthesis delivery devices including transition elements that route, constrain, support and reduce damage to tension member wear as tension in the tension members is varied to adjust the compression of a stented prosthesis loaded onto the delivery device. Various disclosed tension elements include inserts, edge treatments and guides proximate a distal portion of the delivery device upon which the stented prosthesis is loaded. In some embodiments, the transition feature is positioned proximate a location where at least one tension member transitions from a first orientation that is not parallel to the distal portion to a second orientation that is generally parallel to the distal portion. Further embodiments disclose configurations and methods of selectively locking and unlocking a longitudinal and/or rotational position of the stent frame with respect to the distal portion of the delivery device.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: August 18, 2020
    Assignee: Medtronic, Inc.
    Inventors: Michael Gloss, Patrick Griffin, Paul Rothstein, Jeffrey Sandstrom, Brendan Vaughan, Stephen Montgomery, Alan McGuinn
  • Publication number: 20200214833
    Abstract: A transcatheter valve prosthesis including a tubular stent, a prosthetic valve component disposed within and secured to the stent, and a centering mechanism coupled to and encircling an outer surface of the tubular stent. The centering mechanism includes a self-expanding centering ring having an expanded diameter in the expanded configuration that is greater than an expanded diameter of the tubular stent in the expanded configuration and a plurality of self-expanding spokes radially extending between the tubular stent and the centering ring. The centering mechanism may include a base ring and/or a skirt. Alternatively, the centering mechanism includes a plurality of self-expanding loops. When each loop is in a delivery configuration the loop has a straightened profile that proximally extends from a proximal end of the tubular stent. When each loop is in an expanded configuration the loop has a U-shaped profile radially spaced apart from the tubular stent.
    Type: Application
    Filed: March 6, 2020
    Publication date: July 9, 2020
    Inventors: Evelyn BIRMINGHAM, Bernard MULVIHILL, Joel RACCHINI, Jeffrey SANDSTROM
  • Patent number: 10702379
    Abstract: A transcatheter valve prosthesis includes an expandable tubular stent, a prosthetic valve within the stent, and an anti-paravalvular leakage component coupled to and encircling the tubular stent. The anti-paravalvular leakage component includes a radially-compressible annular scaffold, which is a sinusoidal patterned ring of self-expanding material, and an impermeable membrane extending over the annular scaffold. The anti-paravalvular leakage component has an expanded configuration in which at least segments of the annular scaffold curve radially away from the tubular stent. Alternatively, the anti-paravalvular leakage component includes a plurality of self-expanding segments and an annular sealing element coupled to inner surfaces of the segments. The anti-paravalvular leakage component has an expanded configuration in which the segments curve radially away from the tubular stent and the annular sealing element is positioned between an outer surface of the tubular stent and inner surfaces of the segments.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: July 7, 2020
    Assignee: Medtronic CV Luxembourg S.a.r.l.
    Inventors: Kshitija Garde, Joel Racchini, Paul Rothstein, Jeffrey Sandstrom
  • Patent number: 10695172
    Abstract: A transcatheter heart valve prosthesis configured in accordance herewith includes an expandable frame having a plurality of commissure posts extending therefrom, a radially expandable tubular component attached to the plurality of commissure posts, and a locking mechanism operably coupled to a wire. The wire is at least partially slideably disposed within a channel formed in a wall of the tubular component and the locking mechanism is configured to permit the wire to be advanced within the channel to thereby transition the tubular component into a deployed configuration that at least partially engages tissue at the native heart valve.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: June 30, 2020
    Assignee: Medtronic, Inc.
    Inventors: Paul Rothstein, Jeffrey Sandstrom
  • Publication number: 20200146821
    Abstract: A delivery device for percutaneously delivering a stented prosthetic heart valve includes a capsule assembly, a handle, and an outer stability shaft. The capsule assembly includes a capsule and a proximal shaft coupled to the capsule. The capsule includes an expanded configuration wherein the capsule has a first outer diameter, and a collapsed configuration wherein the capsule has a second outer diameter smaller than the first outer diameter. The outer stability shaft defines a lumen and is coupled to the handle and configured to receive the proximal shaft within the lumen of the outer stability shaft. The outer stability shaft has an inner diameter, wherein the first outer diameter of the capsule is greater than the inner diameter of the outer stability shaft and the second outer diameter of the capsule is smaller than the inner diameter of the outer stability shaft.
    Type: Application
    Filed: December 23, 2019
    Publication date: May 14, 2020
    Inventors: Joel RACCHINI, Jeffrey SANDSTROM