Patents by Inventor Jeffrey T. Keacher

Jeffrey T. Keacher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7885712
    Abstract: Techniques for increasing the safety of medical device programming using general purpose hardware, such as a general purpose personal computer, are described. In some embodiments, a system includes an intermediate computing device comprising an applications module. Information from the applications module, such as instructions for an implantable medical device (IMD), may be presented to a user via a user input terminal that is separate from the intermediate computing device. A user may interact with the user input terminal to select an instruction from the applications module, and the intermediate computing device may transmit the selected instruction to the IMD. In some embodiments, the intermediate computing device comprises a web server and the user input terminal comprises a web browser configured to access the web server. In other embodiments, the intermediate computing device comprises a client server and the user input terminal comprises a client.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: February 8, 2011
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Donald R. Johnson, Touby A. Drew, Andrew H. Houchins, Jeffrey T. Keacher, Theodore J. Stone, Earle T. Roberts
  • Patent number: 7848819
    Abstract: Techniques for increasing the safety of medical device programming using general purpose hardware, such as a general purpose personal computer, are described. Some embodiments include a watchdog module that is serviced by the general purpose hardware, a mediator module that monitors programming instructions from the general purpose hardware, and/or a safe mode input that may be activated by a user. In some embodiments, a system comprises an implantable medical device, an intermediate device, a computing device that communicates with the implantable medical device via the intermediate device. The intermediate device may provide any one or more of the safety measures described above. In some embodiments, the intermediate device is dedicated hardware, and critical programming functions are provided by the intermediate device, rather than the general purpose hardware.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: December 7, 2010
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Donald R. Johnson, Touby A. Drew, Andrew H. Houchins, Jeffrey T. Keacher, Theodore J. Stone, Earle T. Roberts
  • Patent number: 7774067
    Abstract: Techniques for automatically generating neurostimulation therapy program groups are disclosed. The techniques may include receiving rating information and information describing actual therapy effects for a plurality of tested programs, and receiving target therapy data describing target therapy effects. The techniques may include automatically generating plurality of program groups based on the rating information and a comparison of actual effects to the target therapy effects. Actual effects and target therapy effects may be, for example, actual paresthesia areas and target paresthesia areas. The techniques may also include determining whether a sufficient number of programs have been tested to generate a desired number of programs groups and, if a sufficient number have not been tested, automatically generating additional programs based on the tested programs, and automatically generating program groups from the tested and automatically generated programs.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: August 10, 2010
    Assignee: Medtronic, Inc.
    Inventors: Jeffrey T. Keacher, Steven M. Goetz, Andrew H. Houchins, Theodore J. Stone, Donald R. Johnson, Shyam Gokaldas
  • Publication number: 20090281594
    Abstract: Peripheral nerve field stimulation (PNFS) may be controlled based on detected physiological effects of the PNFS, which may be an efferent response to the PNFS. In some examples, a closed-loop therapy system may include a sensing module that senses a physiological parameter of the patient, which may be indicative of the patient's response to the PNFS. Based on a signal generated by the sensing module, the PNFS may be activated, deactivated or modified. Example physiological parameters of the patient include heart rate, respiratory rate, electrodermal activity, muscle activity, blood flow rate, sweat gland activity, pilomotor reflex, or thermal activity of the patient's body. In some examples, a patient pain state may be detected based on a signal generated by the sensing module, and therapy may be controlled based on the detection of the pain state.
    Type: Application
    Filed: January 23, 2009
    Publication date: November 12, 2009
    Inventors: Gary W. King, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Jordan J. Greenberg, Kenneth T. Heruth, Mark S. Lent, Paul W. Wacnik
  • Publication number: 20090281595
    Abstract: Peripheral nerve field stimulation (PNFS) delivered by a medical device to a patient may be programmed by specifying one or more characteristics of a stimulation field generated by the IMD to provide the PNFS. The characteristics of the stimulation field may include, for example, a direction of stimulation within the field, a breadth of the stimulation field, a focus of stimulation within the stimulation field, a depth of the stimulation field relative to a reference point, such as the epidermis of the patient, or a nerve fiber diameter selection.
    Type: Application
    Filed: January 26, 2009
    Publication date: November 12, 2009
    Applicant: Medtronic, Inc.
    Inventors: Gary W. King, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Jordan J. Greenberg
  • Publication number: 20090281596
    Abstract: A therapy program for peripheral nerve field stimulation (PNFS) may be selected based on user input indicating a desired therapeutic effect for a user-specified region in which a patient feels pain. In other examples, PNFS may be programmed based on input from a user selecting at least one region from among a plurality of regions in which the patient experiences pain. In addition, the PNFS may be programmed based on user input defining an aspect of PNFS for the selected region, such as a relative intensity of PNFS delivered to at least two selected regions, a balance of PNFS between at least two regions, a desired shift in PNFS from a first region to a second region, or an extent to which a first stimulation field within a first region overlaps with a second stimulation field in a second region.
    Type: Application
    Filed: January 26, 2009
    Publication date: November 12, 2009
    Applicant: Medtronic, Inc
    Inventors: Gary W. King, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Jordan J. Greenberg
  • Publication number: 20090259273
    Abstract: Techniques for using telemetry signal strength for positioning a primary recharge coil of a recharging unit at a location proximate to an Implantable Medical Device (IMD) in preparation to recharge a rechargeable power source of the IMD are disclosed. An antenna of the recharging unit is positioned proximate to the IMD, a telemetry session is initiated between the two devices, and a value indicative of the telemetry signal strength is obtained. Using a known correspondence between telemetry signal strength and recharge coupling efficiency for the IMD/recharging unit pair, the telemetry signal strength value is used to determine whether adequate recharge coupling may be achieved between the pair of devices. If so, a recharge session may be established. Otherwise, the antenna is repositioned and the process is repeated. The correspondence between telemetry signal strength and recharge coupling efficiency for the device pair may be developed empirically or using modeling.
    Type: Application
    Filed: April 10, 2008
    Publication date: October 15, 2009
    Applicant: Medtronic, Inc.
    Inventors: Giselle Suraya Figueiredo, John W. Forsberg, Jeffrey T. Keacher, Alex C. Toy, Erik G. Widman
  • Publication number: 20090234422
    Abstract: The disclosure is directed to techniques for shifting between two electrode combinations. An amplitude of a first electrode combination is incrementally decreased while an amplitude of a second, or subsequent, electrode combination is concurrently incrementally increased. Alternatively, an amplitude of the first electrode combination is maintained at a target amplitude level while the amplitude of the second electrode combination is incrementally increased. The stimulation pulses of the electrode combinations are delivered to the patient interleaved in time. In this manner, the invention provides for a smooth, gradual shift from a first electrode combination to a second electrode combination, allowing the patient to maintain a continual perception of stimulation. The shifting techniques described herein may be used during programming to shift between different electrode combinations to find an efficacious electrode combination.
    Type: Application
    Filed: March 18, 2009
    Publication date: September 17, 2009
    Inventors: Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Gary W. King, Kenneth T. Heruth, Roy L. Testerman, Michael T. Lee, Nathan A. Torgerson, Joseph J. Nolan
  • Publication number: 20090228070
    Abstract: The disclosure is directed to techniques for shifting between two electrode combinations. An amplitude of a first electrode combination is incrementally decreased while an amplitude of a second, or subsequent, electrode combination is concurrently incrementally increased. Alternatively, an amplitude of the first electrode combination is maintained at a target amplitude level while the amplitude of the second electrode combination is incrementally increased. The stimulation pulses of the electrode combinations are delivered to the patient interleaved in time. In this manner, the invention provides for a smooth, gradual shift from a first electrode combination to a second electrode combination, allowing the patient to maintain a continual perception of stimulation. The shifting techniques described herein may be used during programming to shift between different electrode combinations to find an efficacious electrode combination.
    Type: Application
    Filed: February 25, 2009
    Publication date: September 10, 2009
    Inventors: Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Gary W. `King, Kenneth T. Heruth, Roy L. Testerman, Michael T. Lee, Nathan A. Torgerson, Joseph J. Nolan
  • Patent number: 7519431
    Abstract: The disclosure is directed to techniques for shifting between two electrode combinations. An amplitude of a first electrode combination is incrementally decreased while an amplitude of a second, or subsequent, electrode combination is concurrently incrementally increased. Alternatively, an amplitude of the first electrode combination is maintained at a target amplitude level while the amplitude of the second electrode combination is incrementally increased. The stimulation pulses of the electrode combinations are delivered to the patient interleaved in time. In this manner, the invention provides for a smooth, gradual shift from a first electrode combination to a second electrode combination, allowing the patient to maintain a continual perception of stimulation. The shifting techniques described herein may be used during programming to shift between different electrode combinations to find an efficacious electrode combination.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: April 14, 2009
    Assignee: Medtronic, Inc.
    Inventors: Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher, Gary W. King, Kenneth T. Heruth, Roy L. Testerman, Michael T. Lee, Nathan A. Torgerson, Joseph J. Nolan
  • Publication number: 20090018619
    Abstract: The disclosure provides techniques for parameter-directed shifting of electrical stimulation electrode combinations. An external programmer permits a user to shift electrode combinations, e.g., along the length of a lead or leads. The external programmer accepts shift input and causes an electrical stimulator to shift electrode combinations as indicated by the input. Different sets of electrodes may have different electrode counts. For example, an array of electrodes carried by one lead may have a greater number of electrodes than an array of electrodes carried on another lead. The disclosure provides techniques for shifting electrode combinations among leads with different electrode counts. For example, an external programmer may execute shifts in a series of shift operations, where the number of shift operations along the length of a lead having a greater electrode count is greater than the number of shift steps along the length of a lead having a lesser electrode count.
    Type: Application
    Filed: April 28, 2008
    Publication date: January 15, 2009
    Applicant: Medtronic, Inc.
    Inventors: Dennis M. Skelton, Joseph J. Nolan, Nathan A. Torgerson, Wende L. Dewing, Todd V. Smith, Shyam Gokaldas, Steven M. Goetz, Andrew H. Houchins, Jeffrey T. Keacher
  • Publication number: 20080215118
    Abstract: The disclosure is directed to a user interface with a menu that facilitates stimulation therapy programming. The user interface displays a representation of the electrical leads implanted in the patient and at least one menu with icons that the user can use to adjust the stimulation therapy. The user may drag one or more field shapes from a field shape selection menu onto the desired location relative to the electrical leads. A manipulation tool menu may also allow the user to adjust the field shapes placed on the electrical leads, which represent the stimulation region. The programmer that includes the user interface then generates electrical stimulation parameter values for the stimulator to deliver stimulation according to the field shapes or field shape groups defined/located by the user. The field shapes may represent different types of stimulation representations, such as current density, activation functions, and neuron models.
    Type: Application
    Filed: December 6, 2007
    Publication date: September 4, 2008
    Applicant: Medtronic, Inc.
    Inventors: Steven M. Goetz, Jeffrey T. Keacher, Rajeev Sahasrabudhe, Wende L. Dewing, Jon P. Davis, John Rondoni, Gabriela C. Miyazawa, Gary W. King
  • Publication number: 20080183256
    Abstract: A device that programs a medical device includes a display and a user input device. The device displays a graphical representation of a plurality of electrodes on a medical lead implanted in the patient, and displays an active electrode template at a first position relative to the graphical representation of the electrodes. A processor of the device receives input dragging the active electrode template. In response to the input dragging the active electrode template, the processor adjusts at least one parameter of electrical stimulation delivered to the patient via the lead based on the position of the active electrode template relative to the graphical representation of the electrodes on the medical lead.
    Type: Application
    Filed: January 26, 2007
    Publication date: July 31, 2008
    Applicant: Medtronic, Inc.
    Inventor: Jeffrey T. Keacher
  • Publication number: 20080163097
    Abstract: The disclosure is directed to a user interface with a menu that facilitates stimulation therapy programming. The user interface displays a representation of the electrical leads implanted in the patient and at least one menu with icons that the user can use to adjust the stimulation therapy. The user may drag one or more field shapes from a field shape selection menu onto the desired location relative to the electrical leads. A manipulation tool menu may also allow the user to adjust the field shapes placed on the electrical leads, which represent the stimulation region. The programmer that includes the user interface then generates electrical stimulation parameter values for the stimulator to deliver stimulation according to the field shapes or field shape groups defined/located by the user. The field shapes may represent different types of stimulation representations, such as current density, activation functions, and neuron models.
    Type: Application
    Filed: December 6, 2007
    Publication date: July 3, 2008
    Applicant: Medtronic, Inc.
    Inventors: Steven M. Goetz, Jeffrey T. Keacher, Rajeev Sahasrabudhe, Wende L. Dewing, Jon P. Davis, John Rondoni, Gabriela C. Miyazawa, Gary W. King
  • Publication number: 20080154340
    Abstract: The disclosure is directed to a user interface with a menu that facilitates stimulation therapy programming. The user interface displays a representation of the electrical leads implanted in the patient and at least one menu with icons that the user can use to adjust the stimulation therapy. The user may drag one or more field shapes from a field shape selection menu onto the desired location relative to the electrical leads. A manipulation tool menu may also allow the user to adjust the field shapes placed on the electrical leads, which represent the stimulation region. The programmer that includes the user interface then generates electrical stimulation parameter values for the stimulator to deliver stimulation according to the field shapes or field shape groups defined/located by the user. The field shapes may represent different types of stimulation representations, such as current density, activation functions, and neuron models.
    Type: Application
    Filed: December 6, 2007
    Publication date: June 26, 2008
    Inventors: Steven M. Goetz, Jeffrey T. Keacher, Rajeev Sahasrabudhe, Wende L. Dewing, Jon P. Davis, John Rondoni, Gabriela C. Miyazawa, Gary W. King
  • Publication number: 20080140161
    Abstract: Techniques for increasing the safety of medical device programming using general purpose hardware, such as a general purpose personal computer, are described. Some embodiments include a watchdog module that is serviced by the general purpose hardware, a mediator module that monitors programming instructions from the general purpose hardware, and/or a safe mode input that may be activated by a user. In some embodiments, a system comprises an implantable medical device, an intermediate device, a computing device that communicates with the implantable medical device via the intermediate device. The intermediate device may provide any one or more of the safety measures described above. In some embodiments, the intermediate device is dedicated hardware, and critical programming functions are provided by the intermediate device, rather than the general purpose hardware.
    Type: Application
    Filed: November 15, 2007
    Publication date: June 12, 2008
    Applicant: Medtronic, Inc.
    Inventors: Steven M. Goetz, Donald R. Johnson, Touby A. Drew, Andrew H. Houchins, Jeffrey T. Keacher, Theodore J. Stone, Earle T. Roberts
  • Publication number: 20080140162
    Abstract: Techniques for increasing the safety of medical device programming using general purpose hardware, such as a general purpose personal computer, are described. In some embodiments, a system includes an intermediate computing device comprising an applications module. Information from the applications module, such as instructions for an implantable medical device (IMD), may be presented to a user via a user input terminal that is separate from the intermediate computing device. A user may interact with the user input terminal to select an instruction from the applications module, and the intermediate computing device may transmit the selected instruction to the IMD. In some embodiments, the intermediate computing device comprises a web server and the user input terminal comprises a web browser configured to access the web server. In other embodiments, the intermediate computing device comprises a client server and the user input terminal comprises a client.
    Type: Application
    Filed: November 15, 2007
    Publication date: June 12, 2008
    Applicant: Medtronic, Inc.
    Inventors: Steven M. Goetz, Donald R. Johnson, Touby A. Drew, Andrew H. Houchins, Jeffrey T. Keacher, Theodore J. Stone, Earle T. Roberts
  • Publication number: 20080140163
    Abstract: In general, the disclosure is directed towards a small telemetry device with a limited user interface that allows a patient to program an implantable medical device. The user interface may comprise a safe mode button. In some embodiments, a consumer electronic device with a more complex user interface may communicate with the implantable medical device via the telemetry device.
    Type: Application
    Filed: November 15, 2007
    Publication date: June 12, 2008
    Inventors: Jeffrey T. Keacher, Donald R. Johnson, Andrew H. Houchins, Theodore J. Stone
  • Publication number: 20080140157
    Abstract: An apparatus including a processor configured to selectively load a first operating system that controls general purpose computer functionality of the apparatus; and a second operating system different from the first operating system. The second operating system controls medical device programming functionality of the apparatus, enabling the apparatus to program a medical device including at least one implantable component.
    Type: Application
    Filed: December 4, 2007
    Publication date: June 12, 2008
    Inventors: Steven M. Goetz, Touby A. Drew, Jeffrey T. Keacher