Patents by Inventor Jen-Hung Wang

Jen-Hung Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240114688
    Abstract: A memory structure including a substrate, a first doped region, a second doped region, a first gate, a second gate, a first charge storage structure, and a second charge storage structure is provided. The first gate is located on the first doped region. The second gate is located on the second doped region. The first charge storage structure is located between the first gate and the first doped region. The first charge storage structure includes a first tunneling dielectric layer, a first dielectric layer, and a first charge storage layer. The second charge storage structure is located between the second gate and the second doped region. The second charge storage structure includes a second tunneling dielectric layer, a second dielectric layer, and a second charge storage layer. The thickness of the second tunneling dielectric layer is greater than the thickness of the first tunneling dielectric layer.
    Type: Application
    Filed: November 21, 2022
    Publication date: April 4, 2024
    Applicant: United Microelectronics Corp.
    Inventors: Chia-Wen Wang, Chien-Hung Chen, Chia-Hui Huang, Ling Hsiu Chou, Jen Yang Hsueh, Chih-Yang Hsu
  • Patent number: 11948798
    Abstract: A method for manufacturing an integrated circuit includes patterning a plurality of photomask layers over a substrate, partially backfilling the patterned plurality of photomask layers with a first material using atomic layer deposition, completely backfilling the patterned plurality of photomask layers with a second material using atomic layer deposition, removing the plurality of photomask layers to form a masking structure comprising at least one of the first and second materials, and transferring a pattern formed by the masking structure to the substrate and removing the masking structure. The first material includes a silicon dioxide, silicon carbide, or carbon material, and the second material includes a metal oxide or metal nitride material.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: April 2, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Yu Chang, Jung-Hau Shiu, Jen Hung Wang, Tze-Liang Lee
  • Publication number: 20240079267
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a first diffusion barrier layer made of a dielectric material including a metal element, nitrogen, and oxygen and a first protection layer made of a dielectric material including silicon and oxygen and in direct contact with the top surface of the first diffusion barrier layer. The semiconductor device structure also includes a first thickening layer made of a dielectric material including the metal element and oxygen and in direct contact with the top surface of the first protection layer. A maximum metal content in the first thickening layer is greater than that in the first diffusion barrier layer. The semiconductor device structure further includes a conductive feature surrounded by and in direct contact with the first diffusion barrier layer, the first protection layer, and the first thickening layer.
    Type: Application
    Filed: November 9, 2023
    Publication date: March 7, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Cheng SHIH, Tze-Liang LEE, Jen-Hung WANG, Yu-Kai LIN, Su-Jen SUNG
  • Patent number: 11901228
    Abstract: In an embodiment, a method includes forming a first conductive feature in a first inter-metal dielectric (IMD) layer; depositing a blocking film over and physically contacting the first conductive feature; depositing a first dielectric layer over and physically contacting the first IMD layer; depositing a second dielectric layer over and physically contacting the first dielectric layer; removing the blocking film; depositing an etch stop layer over any physically contacting the first conductive feature and the second dielectric layer; forming a second IMD layer over the etch stop layer; etching an opening in the second IMD layer and the etch stop layer to expose the first conductive feature; and forming a second conductive feature in the opening.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Cai-Ling Wu, Hsiu-Wen Hsueh, Wei-Ren Wang, Po-Hsiang Huang, Chii-Ping Chen, Jen Hung Wang
  • Patent number: 11848231
    Abstract: A method for forming a semiconductor device structure is provided. The method includes successively forming a first multi-layer etch stop structure and an insulating layer over a first conductive feature. The insulating layer and the first multi-layer etch stop structure are successively etched to form an opening substantially aligned to the first conductive feature. A second conductive feature is formed in the opening. The formation of the first multi-layer etch stop structure and the second multi-layer etch stop structure includes forming a first metal-containing dielectric layer, forming a silicon-containing dielectric layer over the first metal-containing dielectric layer, and forming a second metal-containing dielectric layer over the silicon-containing dielectric layer. The second metal-containing dielectric layer has a material that is different from the material of the first metal-containing dielectric layer.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: December 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Cheng Shih, Tze-Liang Lee, Jen-Hung Wang, Yu-Kai Lin, Su-Jen Sung
  • Publication number: 20230377966
    Abstract: In an embodiment, a method includes forming a first conductive feature in a first inter-metal dielectric (IMD) layer; depositing a blocking film over and physically contacting the first conductive feature; depositing a first dielectric layer over and physically contacting the first IMD layer; depositing a second dielectric layer over and physically contacting the first dielectric layer; removing the blocking film; depositing an etch stop layer over any physically contacting the first conductive feature and the second dielectric layer; forming a second IMD layer over the etch stop layer; etching an opening in the second IMD layer and the etch stop layer to expose the first conductive feature; and forming a second conductive feature in the opening.
    Type: Application
    Filed: August 4, 2023
    Publication date: November 23, 2023
    Inventors: Cai-Ling Wu, Hsiu-Wen Hsueh, Wei-Ren Wang, Po-Hsiang Huang, Chii-Ping Chen, Jen Hung Wang
  • Publication number: 20230335436
    Abstract: A semiconductor device includes a first conductive feature, a first dielectric layer over the first conductive feature, a second conductive feature extending through the first dielectric layer, an air gap between the first dielectric layer and the second conductive feature, and an etch stop layer over the second conductive feature and the first dielectric layer. The etch stop layer covers the air gap, and the air gap extends above a bottommost surface of the etch stop layer.
    Type: Application
    Filed: April 14, 2022
    Publication date: October 19, 2023
    Inventors: Wei-Ren Wang, Jen Hung Wang, Tze-Liang Lee
  • Patent number: 11769693
    Abstract: A semiconductor structure includes a conductive feature, a first metal-based etch-stop layer over the underlying structure, a metal-free etch-stop layer over the first metal-based etch-stop layer, a second metal-based etch-stop layer over the metal-free etch-stop layer, an interlayer dielectric layer over the second metal-based etch-stop layer, and an interconnect structure extending through the first metal-based etch-stop layer, metal-free etch-stop layer, and the second metal-based etch-stop layer, wherein a bottom portion of the conductive interconnect structure directly contacts the conductive feature. The first metal-based etch-stop layer may include a first metallic component having one of aluminum, tantalum, titanium, or hafnium, and the second metal-based etch-stop layer may include a second metallic component the same as or different from the first metallic component. The first metal-based etch-stop layer and the second metal-based etch-stop layer may both be free of silicon.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: September 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Szu-Ping Tung, Yu-Kai Lin, Jen Hung Wang, Shing-Chyang Pan
  • Publication number: 20230274975
    Abstract: A semiconductor structure including a substrate, a first dielectric layer, a first conductive feature, an etch stop layer, a second dielectric layer and a second conductive feature is provided. The first dielectric layer is disposed over the substrate. The first conductive feature is disposed in the first dielectric layer. The etch stop layer is disposed over the first dielectric layer and the first conductive feature, wherein the etch stop layer comprises a metal-containing layer and a silicon-containing layer, the metal-containing layer is located between the first dielectric layer and the silicon-containing layer, the metal-containing layer comprises a nitride-containing region and an oxide-containing region, and the nitride-containing region contacts the first conductive feature. The second dielectric layer is disposed over the etch stop layer. The second conductive feature penetrates the second dielectric layer and electrically connects with the first conductive feature.
    Type: Application
    Filed: May 1, 2023
    Publication date: August 31, 2023
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Kai Lin, Su-Jen Sung, Tze-Liang Lee, Jen-Hung Wang
  • Publication number: 20230253247
    Abstract: A method of forming a semiconductor device includes: forming a first conductive feature in a first dielectric layer disposed over a substrate; forming a metal cap layer over an upper surface of the first conductive feature distal from the substrate; selectively forming a dielectric cap layer over an upper surface of the first dielectric layer and laterally adjacent to the metal cap layer, wherein the metal cap layer is exposed by the dielectric cap layer; and forming an etch stop layer stack over the metal cap layer and the dielectric cap layer, wherein the etch stop layer stack comprises a plurality of etch stop layers.
    Type: Application
    Filed: April 17, 2023
    Publication date: August 10, 2023
    Inventors: Chao-Chun Wang, Jen Hung Wang
  • Patent number: 11670546
    Abstract: A semiconductor structure including a substrate, a first dielectric layer, a first conductive feature, an etch stop layer, a second dielectric layer and a second conductive feature is provided. The first dielectric layer is disposed over the substrate. The first conductive feature is disposed in the first dielectric layer. The etch stop layer is disposed over the first dielectric layer and the first conductive feature, wherein the etch stop layer comprises a metal-containing layer and a silicon-containing layer, the metal-containing layer is located between the first dielectric layer and the silicon-containing layer, the metal-containing layer comprises a nitride-containing region and an oxide-containing region, and the nitride-containing region contacts the first conductive feature. The second dielectric layer is disposed over the etch stop layer. The second conductive feature penetrates the second dielectric layer and electrically connects with the first conductive feature.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: June 6, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Kai Lin, Su-Jen Sung, Tze-Liang Lee, Jen-Hung Wang
  • Patent number: 11658064
    Abstract: A method of forming a semiconductor device includes: forming a first conductive feature in a first dielectric layer disposed over a substrate; forming a metal cap layer over an upper surface of the first conductive feature distal from the substrate; selectively forming a dielectric cap layer over an upper surface of the first dielectric layer and laterally adjacent to the metal cap layer, wherein the metal cap layer is exposed by the dielectric cap layer; and forming an etch stop layer stack over the metal cap layer and the dielectric cap layer, wherein the etch stop layer stack comprises a plurality of etch stop layers.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: May 23, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chao-Chun Wang, Jen Hung Wang
  • Patent number: 11651993
    Abstract: A semiconductor device includes a substrate, a first conductive feature over a portion of the substrate, and an etch stop layer over the substrate and the first conductive feature. The etch stop layer includes a silicon-containing dielectric (SCD) layer and a metal-containing dielectric (MCD) layer over the SCD layer. The semiconductor device further includes a dielectric layer over the etch stop layer, and a second conductive feature in the dielectric layer. The second conductive feature penetrates the etch stop layer and electrically connects to the first conductive feature.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: May 16, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Szu-Ping Tung, Jen Hung Wang, Shing-Chyang Pan
  • Publication number: 20230135172
    Abstract: An improved method of forming conductive features and a semiconductor device formed by the same are disclosed. In an embodiment, a method includes providing a first conductive feature in a first dielectric layer; selectively depositing an etch-resistant layer over the first dielectric layer, a sidewall of the etch-resistant layer being coterminous with a sidewall of the first dielectric layer; after selectively depositing the etch-resistant layer, selectively depositing a capping layer over the first conductive feature adjacent the etch-resistant layer, a sidewall of the capping layer being coterminous with a sidewall of the first conductive feature; and forming a second conductive feature over the capping layer, the etch-resistant layer separating the second conductive feature from the first dielectric layer.
    Type: Application
    Filed: March 31, 2022
    Publication date: May 4, 2023
    Inventors: Wei-Ren Wang, Jen Hung Wang, Tze-Liang Lee
  • Publication number: 20230121210
    Abstract: An improved method of forming conductive features and a semiconductor device formed by the same are disclosed. In an embodiment, a method includes forming a metal line extending through a first dielectric layer, the metal line being electrically coupled to a transistor; selectively depositing a sacrificial material over the metal line; selectively depositing a first dielectric material over the first dielectric layer and adjacent to the sacrificial material; selectively depositing a second dielectric material over the first dielectric material; removing the sacrificial material to form a first recess exposing the metal line; and forming a metal via in the first recess and electrically coupled to the metal line.
    Type: Application
    Filed: March 31, 2022
    Publication date: April 20, 2023
    Inventors: Wei-Ren Wang, Jen Hung Wang, Tze-Liang Lee
  • Publication number: 20230121958
    Abstract: Interconnect structures exhibiting reduced accumulation of copper vacancies along interfaces between contact etch stop layers (CESLs) and interconnects, along with methods for fabrication, are disclosed herein. A method includes forming a copper interconnect in a dielectric layer and depositing a metal nitride CESL over the copper interconnect and the dielectric layer. An interface between the metal nitride CESL and the copper interconnect has a first surface nitrogen concentration, a first nitrogen concentration and/or a first number of nitrogen-nitrogen bonds. A nitrogen plasma treatment is performed to modify the interface between the metal nitride CESL and the copper interconnect.
    Type: Application
    Filed: December 20, 2022
    Publication date: April 20, 2023
    Inventors: Hui Lee, Po-Hsiang Huang, Wen-Sheh Huang, Jen Hung Wang, Su-Jen Sung, Chih-Chien Chi, Pei-Hsuan Lee
  • Publication number: 20230068625
    Abstract: A semiconductor structure includes a first dielectric layer, a first conductive feature, a second conductive feature, a first etch stop layer, and a conductive via. The first conductive feature and the second conductive feature are embedded in the first dielectric layer. The first etch stop layer is disposed over the dielectric layer. The conductive via is surrounded by the first etch stop layer and electrically connected to the first conductive feature, in which the conductive via is in contact with a top surface of the first etch stop layer.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Ren WANG, Tze-Liang LEE, Jen-Hung WANG
  • Patent number: 11532548
    Abstract: Interconnect structures exhibiting reduced accumulation of copper vacancies along interfaces between contact etch stop layers (CESLs) and interconnects, along with methods for fabrication, are disclosed herein. A method includes forming a copper interconnect in a dielectric layer and depositing a metal nitride CESL over the copper interconnect and the dielectric layer. An interface between the metal nitride CESL and the copper interconnect has a first surface nitrogen concentration, a first nitrogen concentration and/or a first number of nitrogen-nitrogen bonds. A nitrogen plasma treatment is performed to modify the interface between the metal nitride CESL and the copper interconnect.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: December 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hui Lee, Po-Hsiang Huang, Wen-Sheh Huang, Jen Hung Wang, Su-Jen Sung, Chih-Chien Chi, Pei-Hsuan Lee
  • Publication number: 20220319922
    Abstract: In an embodiment, a method includes forming a first conductive feature in a first inter-metal dielectric (IMD) layer; depositing a blocking film over and physically contacting the first conductive feature; depositing a first dielectric layer over and physically contacting the first IMD layer; depositing a second dielectric layer over and physically contacting the first dielectric layer; removing the blocking film; depositing an etch stop layer over any physically contacting the first conductive feature and the second dielectric layer; forming a second IMD layer over the etch stop layer; etching an opening in the second IMD layer and the etch stop layer to expose the first conductive feature; and forming a second conductive feature in the opening.
    Type: Application
    Filed: July 9, 2021
    Publication date: October 6, 2022
    Inventors: Cai-Ling Wu, Hsiu-Wen Hsueh, Wei-Ren Wang, Po-Hsiang Huang, Chii-Ping Chen, Jen Hung Wang
  • Publication number: 20220285210
    Abstract: A semiconductor structure including a substrate, a first dielectric layer, a first conductive feature, an etch stop layer, a second dielectric layer and a second conductive feature is provided. The first dielectric layer is disposed over the substrate. The first conductive feature is disposed in the first dielectric layer. The etch stop layer is disposed over the first dielectric layer and the first conductive feature, wherein the etch stop layer comprises a metal-containing layer and a silicon-containing layer, the metal-containing layer is located between the first dielectric layer and the silicon-containing layer, the metal-containing layer comprises a nitride-containing region and an oxide-containing region, and the nitride-containing region contacts the first conductive feature. The second dielectric layer is disposed over the etch stop layer. The second conductive feature penetrates the second dielectric layer and electrically connects with the first conductive feature.
    Type: Application
    Filed: March 4, 2021
    Publication date: September 8, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Kai Lin, Su-Jen Sung, Tze-Liang Lee, Jen-Hung Wang