Patents by Inventor Jeng-Jiun Yang

Jeng-Jiun Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8735980
    Abstract: A semiconductor structure, which serves as the core of a semiconductor fabrication platform, has a combination of empty-well regions and filled-well regions variously used by electronic elements, particularly insulated-gate field-effect transistors (“IGFETs”), to achieve desired electronic characteristics. A relatively small amount of semiconductor well dopant is near the top of an empty well. A considerable amount of semiconductor well dopant is near the top of a filled well. Some IGFETs (100, 102, 112, 114, 124, and 126) utilize empty wells (180, 182, 192, 194, 204, and 206) in achieving desired transistor characteristics. Other IGFETs (108, 110, 116, 118, 120, and 122) utilize filled wells (188, 190, 196, 198, 200, and 202) in achieving desired transistor characteristics.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: May 27, 2014
    Assignee: National Semiconductor Corporation
    Inventors: Constantin Bulucea, Sandeep Bahl, William French, Jeng-Jiun Yang, Donald Archer, David C. Parker, Prasad Chaparala
  • Patent number: 8629027
    Abstract: An asymmetric insulated-gate field-effect transistor (100 or 102) has a source (240 or 280) and a drain (242 or 282) laterally separated by a channel zone (244 or 284) of body material (180 or 182) of a semiconductor body. A gate electrode (262 or 302) overlies a gate dielectric layer (260 or 300) above the channel zone. A more heavily doped pocket portion (250 or 290) of the body material extends largely along only the source. The source has a main source portion (240M or 280M) and a more lightly doped lateral source extension (240E or 280E). The drain has a main portion (242M or 282M) and a more lightly doped lateral drain extension (242E or 282E). The drain extension is more lightly doped than the source extension. The maximum concentration of the semiconductor dopant defining the two extensions occurs deeper in the drain extension than in the source extension. Additionally or alternatively, the drain extension extends further laterally below the gate electrode than the source extension.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: January 14, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Constantin Bulucea, William D. French, Sandeep R. Bahl, Jeng-Jiun Yang, D. Courtney Parker, Peter B. Johnson, Donald M. Archer
  • Patent number: 8415752
    Abstract: An asymmetric insulated-gate field effect transistor (100U or 102U) provided along an upper surface of a semiconductor body contains first and second source/drain zones (240 and 242 or 280 and 282) laterally separated by a channel zone (244 or 284) of the transistor's body material. A gate electrode (262 or 302) overlies a gate dielectric layer (260 or 300) above the channel zone. A pocket portion (250 or 290) of the body material more heavily doped than laterally adjacent material of the body material extends along largely only the first of the S/D zones and into the channel zone. The vertical dopant profile of the pocket portion is tailored to reach a plurality of local maxima (316-1-316-3) at respective locations (PH-1-PH-3) spaced apart from one another. The tailoring is typically implemented so that the vertical dopant profile of the pocket portion is relatively flat near the upper semiconductor surface. As a result, the transistor has reduced leakage current.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: April 9, 2013
    Assignee: National Semiconductor Corporation
    Inventors: Jeng-Jiun Yang, Constantin Bulucea, Sandeep R. Bahl
  • Patent number: 8410549
    Abstract: Insulated-gate field-effect transistors (“IGFETs”), both symmetric and asymmetric, suitable for a semiconductor fabrication platform that provides IGFETs for analog and digital applications, including mixed-signal applications, utilize empty-well regions in achieving high performance. A relatively small amount of semiconductor well dopant is near the top of each empty well. Each IGFET (100, 102, 112, 114, 124, or 126) has a pair of source/drain zones laterally separated by a channel zone of body material of the empty well (180, 182, 192, 194, 204, or 206). A gate electrode overlies a gate dielectric layer above the channel zone. Each source/drain zone (240, 242, 280, 282, 520, 522, 550, 552, 720, 722, 752, or 752) has a main portion (240M, 242M, 280M, 282M, 520M, 522M, 550M, 552M, 720M, 722M, 752M, or 752M) and a more lightly doped lateral extension (240E, 242E, 280E, 282E, 520E, 522E, 550E, 552E, 720E, 722E, 752E, or 752E).
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: April 2, 2013
    Assignee: National Semiconductor Corporation
    Inventors: Constantin Bulucea, Jeng-Jiun Yang, William D. French, Sandeep R. Bahl, D. Courtney Parker
  • Patent number: 8377768
    Abstract: A group of high-performance like-polarity insulated-gate field-effect transistors (100, 108, 112, 116, 120, and 124 or 102, 110, 114, 118, 122, and 126) have selectably different configurations of lateral source/drain extensions, halo pockets, and gate dielectric thicknesses suitable for a semiconductor fabrication platform that provides a wide variety of transistors for analog and/or digital applications. Each transistor has a pair of source/drain zones, a gate dielectric layer, and a gate electrode. Each source/drain zone includes a main portion and a more lightly doped lateral extension. The lateral extension of one of the source/drain zones of one of the transistors is more heavily doped or/and extends less deeply below the upper semiconductor surface than the lateral extension of one of the source/drain zones of another of the transistors.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: February 19, 2013
    Assignee: National Semiconductor Corporation
    Inventors: Constantin Bulucea, William D. French, Donald M. Archer, Jeng-Jiun Yang, Sandeep R. Bahl, D. Courtney Parker
  • Publication number: 20130015535
    Abstract: An asymmetric insulated-gate field effect transistor (100U or 102U) provided along an upper surface of a semiconductor body contains first and second source/drain zones (240 and 242 or 280 and 282) laterally separated by a channel zone (244 or 284) of the transistor's body material. A gate electrode (262 or 302) overlies a gate dielectric layer (260 or 300) above the channel zone. A pocket portion (250 or 290) of the body material more heavily doped than laterally adjacent material of the body material extends along largely only the first of the S/D zones and into the channel zone. The vertical dopant profile of the pocket portion is tailored to reach a plurality of local maxima (316-1-316-3) at respective locations (PH-1-PH-3) spaced apart from one another. The tailoring is typically implemented so that the vertical dopant profile of the pocket portion is relatively flat near the upper semiconductor surface. As a result, the transistor has reduced leakage current.
    Type: Application
    Filed: January 11, 2012
    Publication date: January 17, 2013
    Inventors: Jeng-Jiun Yang, Constantin Bulucea, Sandeep R. Bahl
  • Patent number: 8304308
    Abstract: A semiconductor structure contains a bipolar transistor (101) and a spacing structure (265-1 or 265-2). The transistor has an emitter (241), a base (243), and a collector (245). The base is formed with an intrinsic base portion (243I), a base link portion (243L), and a base contact portion (245C). The intrinsic base portion is situated below the emitter and above material of the collector. The base link portion extends between the intrinsic base portion and the base contact portions. The spacing structure includes an isolating dielectric layer (267-1 or 267-2) and a spacing component. The dielectric layer extends along the upper semiconductor surface. The spacing component includes a lateral spacing portion (269-1 or 269-2) of largely non-monocrystalline semiconductor material, preferably polycrystalline semiconductor material, situated on the dielectric layer above the base link portion.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: November 6, 2012
    Assignee: National Semiconductor Corporation
    Inventors: Jeng-Jiun Yang, Constantin Bulucea
  • Patent number: 8304835
    Abstract: A semiconductor structure, which serves as the core of a semiconductor fabrication platform, has a combination of empty-well regions and filled-well regions variously used by electronic elements, particularly insulated-gate field-effect transistors (“IGFETs”), to achieve desired electronic characteristics. A relatively small amount of semiconductor well dopant is near the top of an empty well. A considerable amount of semiconductor well dopant is near the top of a filled well. Some IGFETs (100, 102, 112, 114, 124, and 126) utilize empty wells (180, 182, 192, 194, 204, and 206) in achieving desired transistor characteristics. Other IGFETs (108, 110, 116, 118, 120, and 122) utilize filled wells (188, 190, 196, 198, 200, and 202) in achieving desired transistor characteristics.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: November 6, 2012
    Assignee: National Semiconductor Corporation
    Inventors: Constantin Bulucea, Sandeep R. Bahl, William D. French, Jeng-Jiun Yang, Donald M. Archer, D. Courtney Parker, Prasad Chaparala
  • Publication number: 20120264263
    Abstract: A group of high-performance like-polarity insulated-gate field-effect transistors (100, 108, 112, 116, 120, and 124 or 102, 110, 114, 118, 122, and 126) have selectably different configurations of lateral source/drain extensions, halo pockets, and gate dielectric thicknesses suitable for a semiconductor fabrication platform that provides a wide variety of transistors for analog and/or digital applications. Each transistor has a pair of source/drain zones, a gate dielectric layer, and a gate electrode. Each source/drain zone includes a main portion and a more lightly doped lateral extension. The lateral extension of one of the source/drain zones of one of the transistors is more heavily doped or/and extends less deeply below the upper semiconductor surface than the lateral extension of one of the source/drain zones of another of the transistors.
    Type: Application
    Filed: November 9, 2011
    Publication date: October 18, 2012
    Inventors: Constantin Bulucea, William D. French, Donald M. Archer, Jeng-Jiun Yang, Sandeep R. Bahl, D. Courtney Parker
  • Publication number: 20120181619
    Abstract: A semiconductor structure contains a bipolar transistor (101) and a spacing structure (265-1 or 265-2). The transistor has an emitter (241), a base (243), and a collector (245). The base is formed with an intrinsic base portion (243I), a base link portion (243L), and a base contact portion (245C). The intrinsic base portion is situated below the emitter and above material of the collector. The base link portion extends between the intrinsic base portion and the base contact portions. The spacing structure includes an isolating dielectric layer (267-1 or 267-2) and a spacing component. The dielectric layer extends along the upper semiconductor surface. The spacing component includes a lateral spacing portion (269-1 or 269-2) of largely non-monocrystalline semiconductor material, preferably polycrystalline semiconductor material, situated on the dielectric layer above the base link portion.
    Type: Application
    Filed: August 4, 2011
    Publication date: July 19, 2012
    Inventors: Jeng-Jiun Yang, Constantin Bulucea
  • Patent number: 8163619
    Abstract: An asymmetric insulated-gate field effect transistor (100U or 102U) is provided along an upper surface of a semiconductor body so as to have first and second source/drain zones (240 and 242 or 280 and 282) laterally separated by a channel zone (244 or 284) of the transistor's body material. A gate electrode (262 or 302) overlies a gate dielectric layer (260 or 300) above the channel zone. A pocket portion (250 or 290) of the body material more heavily doped than laterally adjacent material of the body material extends along largely only the first of the S/D zones and into the channel zone. The vertical dopant profile of the pocket portion is tailored to reach a plurality of local maxima at respective locations (PH-1-PH-3-NH-3) spaced apart from one another. This typically enables the transistor to have reduced current leakage.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: April 24, 2012
    Assignee: National Semiconductor Corporation
    Inventors: Jeng-Jiun Yang, Constantin Bulucea, Sandeep R. Bahl
  • Patent number: 8101479
    Abstract: A gate electrode (302) of a field-effect transistor (102) is defined above, and vertically separated by a gate dielectric layer (300) from, a channel-zone portion (284) of body material of a semiconductor body. Semiconductor dopant is introduced into the body material to define a more heavily doped pocket portion (290) using the gate electrode as a dopant-blocking shield. A spacer (304T) having a dielectric portion situated along the gate electrode, a dielectric portion situated along the body, and a filler portion (SC) largely occupying the space between the other two spacer portions is provided. Semiconductor dopant is introduced into the body to define a pair of source/drain portions (280M and 282M) using the gate electrode and spacer as a dopant-blocking shield. The filler spacer portion is removed to convert the spacer to an L shape (304). Electrical contacts (310 and 312) are formed respectively to the source/drain portions.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: January 24, 2012
    Assignee: National Semiconductor Corporation
    Inventors: D. Courtney Parker, Donald M. Archer, Sandeep R. Bahl, Constantin Bulucea, William D. French, Peter B. Johnson, Jeng-Jiun Yang
  • Patent number: 8084827
    Abstract: A group of high-performance like-polarity insulated-gate field-effect transistors (100, 108, 112, 116, 120, and 124 or 102, 110, 114, 118, 122, and 126) have selectably different configurations of lateral source/drain extensions, halo pockets, and gate dielectric thicknesses suitable for a semiconductor fabrication platform that provides a wide variety of transistors for analog and/or digital applications. Each transistor has a pair of source/drain zones, a gate dielectric layer, and a gate electrode. Each source/drain zone includes a main portion and a more lightly doped lateral extension. The lateral extension of one of the source/drain zones of one of the transistors is more heavily doped or/and extends less deeply below the upper semiconductor surface than the lateral extension of one of the source/drain zones of another of the transistors.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: December 27, 2011
    Assignee: National Semiconductor Corporation
    Inventors: Constantin Bulucea, William D. French, Donald M. Archer, Jeng-Jiun Yang, Sandeep R. Bahl, D. Courtney Parker
  • Patent number: 8030151
    Abstract: A bipolar transistor (101) has a base (243) formed with an intrinsic base portion (2431), a base contact portion (245C), and a base link portion (243L) that extends between the intrinsic base portion and the base contact portion. An isolating dielectric layer (267-1 or 267-2) is provided above the base link portion. The length of the base link portion is determined, and thereby controlled, with a lateral spacing portion (269-1 or 269-2) of largely non-monocrystalline semiconductor material, preferably polycrystalline semiconductor material, provided on the dielectric layer above the base link portion. The lateral spacing portion is typically provided as part of a layer of non-monocrystalline semiconductor material used in the gate electrode of an insulated-gate field-effect transistor.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: October 4, 2011
    Assignee: National Semiconductor Corporation
    Inventors: Jeng-Jiun Yang, Constantin Bulucea
  • Patent number: 7968921
    Abstract: An asymmetric insulated-gate field-effect transistor (100) has a source (240) and a drain (242) laterally separated by a channel zone (244) of body material (180) of a semiconductor body. A gate electrode (262) overlies a gate dielectric layer (260) above the channel zone. A more heavily doped pocket portion (250) of the body material extends largely along only the source. Each of the source and drain has a main portion (240M or 242M) and a more lightly doped lateral extension (240E or 242E). The drain extension is more lightly doped than the source extension. The maximum concentration of the semiconductor dopant defining the two extensions occurs deeper in the drain extension than in the source extension. Additionally or alternatively, the drain extension extends further laterally below the gate electrode than the source extension. These features enable the threshold voltage to be highly stable with operational time.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: June 28, 2011
    Assignee: National Semiconductor Corporation
    Inventors: Constantin Bulucea, William D. French, Sandeep R. Bahl, Jeng-Jiun Yang, D. Courtney Parker, Peter B. Johnson, Donald M. Archer
  • Publication number: 20100244106
    Abstract: Fabrication of an asymmetric field-effect transistor (100) entails defining a gate electrode (262) above, and vertically separated by a gate dielectric layer (260) from, a channel-zone portion (244) of body material of a semiconductor body. Semiconductor dopant is introduced into the body material to define a more heavily doped pocket portion (250) using the gate electrode as a dopant-blocking shield. A spacer (264T) is provided along the gate electrode. The spacer includes (i) a dielectric portion situated along the gate electrode, (ii) a dielectric portion situated along the semiconductor body, and (iii) a filler portion (SC) largely occupying the space between the other two spacer portions. Semiconductor dopant is introduced into the semiconductor body to define a pair of main source/drain portions (240M and 240E) using the gate electrode and the spacer as a dopant-blocking shield. The filler spacer portion is removed to convert the spacer to an L shape (264).
    Type: Application
    Filed: March 27, 2009
    Publication date: September 30, 2010
    Inventors: D. Courtney Parker, Donald M. Archer, Sandeep R. Bahl, Constantin Bulucea, William D. French, Peter B. Johnson, Jeng-Jiun Yang
  • Publication number: 20100244147
    Abstract: An asymmetric insulated-gate field effect transistor (100U or 102U) provided along an upper surface of a semiconductor body contains first and second source/drain zones (240 and 242 or 280 and 282) laterally separated by a channel zone (244 or 284) of the transistor's body material. A gate electrode (262 or 302) overlies a gate dielectric layer (260 or 300) above the channel zone. A pocket portion (250 or 290) of the body material more heavily doped than laterally adjacent material of the body material extends along largely only the first of the S/D zones and into the channel zone. The vertical dopant profile of the pocket portion is tailored to reach a plurality of local maxima (316-1-316-3) at respective locations (PH-1-PH-3) spaced apart from one another. The tailoring is typically implemented so that the vertical dopant profile of the pocket portion is relatively flat near the upper semiconductor surface. As a result, the transistor has reduced leakage current.
    Type: Application
    Filed: March 27, 2009
    Publication date: September 30, 2010
    Inventors: Jeng-Jiun Yang, Constantin Bulucea, Sandeep R. Bahl
  • Publication number: 20100244143
    Abstract: A semiconductor structure contains a bipolar transistor (101) and a spacing structure (265-1 or 265-2). The transistor has an emitter (241), a base (243), and a collector (245). The base is formed with an intrinsic base portion (243I), a base link portion (243L), and a base contact portion (245C). The intrinsic base portion is situated below the emitter and above material of the collector. The base link portion extends between the intrinsic base portion and the base contact portions. The spacing structure includes an isolating dielectric layer (267-1 or 267-2) and a spacing component. The dielectric layer extends along the upper semiconductor surface. The spacing component includes a lateral spacing portion (269-1 or 269-2) of largely non-monocrystalline semiconductor material, preferably polycrystalline semiconductor material, situated on the dielectric layer above the base link portion.
    Type: Application
    Filed: March 27, 2009
    Publication date: September 30, 2010
    Inventors: Jeng-Jiun Yang, Constantin Bulucea
  • Publication number: 20100244130
    Abstract: Insulated-gate field-effect transistors (“IGFETs”), both symmetric and asymmetric, suitable for a semiconductor fabrication platform that provides IGFETs for analog and digital applications, including mixed-signal applications, utilize empty-well regions in achieving high performance. A relatively small amount of semiconductor well dopant is near the top of each empty well. Each IGFET (100, 102, 112, 114, 124, or 126) has a pair of source/drain zones laterally separated by a channel zone of body material of the empty well (180, 182, 192, 194, 204, or 206). A gate electrode overlies a gate dielectric layer above the channel zone. Each source/drain zone (240, 242, 280, 282, 520, 522, 550, 552, 720, 722, 752, or 752) has a main portion (240M, 242M, 280M, 282M, 520M, 522M, 550M, 552M, 720M, 722M, 752M, or 752M) and a more lightly doped lateral extension (240E, 242E, 280E, 282E, 520E, 522E, 550E, 552E, 720E, 722E, 752E, or 752E).
    Type: Application
    Filed: March 27, 2009
    Publication date: September 30, 2010
    Inventors: Constantin Bulucea, Jeng-Jiun Yang, William D. French, Sandeep R. Bahl, D. Courtney Parker
  • Publication number: 20100244149
    Abstract: A group of high-performance like-polarity insulated-gate field-effect transistors (100, 108, 112, 116, 120, and 124 or 102, 110, 114, 118, 122, and 126) have selectably different configurations of lateral source/drain extensions, halo pockets, and gate dielectric thicknesses suitable for a semiconductor fabrication platform that provides a wide variety of transistors for analog and/or digital applications. Each transistor has a pair of source/drain zones, a gate dielectric layer, and a gate electrode. Each source/drain zone includes a main portion and a more lightly doped lateral extension. The lateral extension of one of the source/drain zones of one of the transistors is more heavily doped or/and extends less deeply below the upper semiconductor surface than the lateral extension of one of the source/drain zones of another of the transistors.
    Type: Application
    Filed: March 27, 2009
    Publication date: September 30, 2010
    Inventors: Constantin Bulucea, William D. French, Donald M. Archer, Jeng-Jiun Yang, Sandeep R. Bahl, D. Courtney Parker