Patents by Inventor Jeng-Shyan Lin

Jeng-Shyan Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100184242
    Abstract: Provided is a method of implanting dopant ions to an integrated circuit. The method includes forming a first pixel and a second pixel in a substrate, forming an etch stop layer over the substrate, forming a hard mask layer over the etch stop layer, patterning the hard mask layer to include an opening between the first pixel and the second pixel, and implanting a plurality of dopants through the opening to form an isolation feature.
    Type: Application
    Filed: January 16, 2009
    Publication date: July 22, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jeng-Shyan Lin, Dun-Nian Yaung, Jen-Cheng Liu, Chun-Chieh Chuang, Pao-Tung Chen, Wen-De Wang, Jyh-Ming Hung
  • Patent number: 7553689
    Abstract: A semiconductor device including a semiconductor substrate having a photosensor formed therein; a first layer overlying the substrate, the first layer includes a portion having a generally concave shaped surface being the negative shaped of a micro-lens to be formed there over; a second layer overlying the first layer, the second layer including a generally convex shaped portion vertically aligned with and mating with the generally concave shaped surface, the generally convex shaped portion being constructed and arranged to define a micro-lens positioned to cause parallel light passing through the micro-lens to converge on and strike the photosensor.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: June 30, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jeng-Shyan Lin, Chien-Hsien Tseng, Shou-Gwo Wuu, Ho-Ching Chien, Dun-Nian Yaung, Hung-Jen Hsu
  • Patent number: 7507596
    Abstract: The present invention is CMOS image sensor and its method of fabrication. This invention provides an efficient structure to improve the quantum efficiency of a CMOS image sensor with borderless contact. The image sensor comprises a N-well/P-substrate type photodiode with borderless contact and dielectric structure covering the photodiode region. The dielectric structure is located between the photodiode and the interlevel dielectric (ILD) and is used as a buffer layer for the borderless contact. The method of fabricating a high performance photodiode comprises forming a photodiode in the n-well region of a shallow trench, and embedding a dielectric material between the ILD oxide and the photodiode having a refraction index higher than the ILD oxide.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: March 24, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Dun-Nian Yaung, Shou-Gwo Wuu, Ho-Ching Chen, Chien-Hsien Tseng, Jeng-Shyan Lin
  • Patent number: 7479403
    Abstract: A photo sensor with pinned photodiode structure integrated with a trench isolation structure. The photo sensor includes a substrate of a first conductivity type, at least one trench in the substrate, at least one doped region of the first conductivity type, and at least one doped region of a second conductivity type. Each doped region of the first conductivity type is beneath a corresponding trench. Each doped region of the second conductivity type is sandwiched between the corresponding doped region and the substrate of the first conductivity type. No edge of any doped region of the first or second conductivity type extends to the trench corners. A method of fabricating the photo sensor is also provided.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: January 20, 2009
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Dun-Nian Yaung, Sou-Kuo Wu, Ho-Ching Chien, Chien-Hsien Tseng, Jeng-Shyan Lin
  • Patent number: 7232697
    Abstract: Provided are a semiconductor device and a method for its manufacture. In one example, the method includes forming an isolation structure having a first refraction index over a sensor embedded in a substrate. A first layer having a second refraction index that is different from the first refraction index is formed over the isolation structure. The first layer is removed from at least a portion of the isolation structure. A second layer having a third refraction index is formed over the isolation structure after the first layer is removed. The third refraction index is substantially similar to the first refraction index.
    Type: Grant
    Filed: April 5, 2004
    Date of Patent: June 19, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Hsuan Hsu, Dun-Nian Yaung, Shou-Gwo Wuu, Ho-Ching Chien, Chien-Hsien Tseng, Jeng-Shyan Lin
  • Publication number: 20070120160
    Abstract: Provided are a semiconductor device and a method for its manufacture. In one example, the method includes forming an isolation structure having a first refraction index over a sensor embedded in a substrate. A first layer having a second refraction index that is different from the first refraction index is formed over the isolation structure. The first layer is removed from at least a portion of the isolation structure. A second layer having a third refraction index is formed over the isolation structure after the first layer is removed. The third refraction index is substantially similar to the first refraction index.
    Type: Application
    Filed: January 26, 2007
    Publication date: May 31, 2007
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Hsuan Hsu, Dun-Nian Yaung, Shou-Gwo Wuu, Ho-Ching Chien, Chien-Hsien Tseng, Jeng-Shyan Lin
  • Publication number: 20070015305
    Abstract: A semiconductor device including a semiconductor substrate having a photosensor formed therein; a first layer overlying the substrate, the first layer includes a portion having a generally concave shaped surface being the negative shaped of a micro-lens to be formed there over; a second layer overlying the first layer, the second layer including a generally convex shaped portion vertically aligned with and mating with the generally concave shaped surface, the generally convex shaped portion being constructed and arranged to define a micro-lens positioned to cause parallel light passing through the micro-lens to converge on and strike the photosensor.
    Type: Application
    Filed: July 13, 2005
    Publication date: January 18, 2007
    Inventors: Jeng-Shyan Lin, Chien-Hsien Tseng, Shou-Gwo Wuu, Ho-Ching Chien, Dun-Nian Yaung, Hung-Jen Hsu
  • Patent number: 7145190
    Abstract: A photo sensor with pinned photodiode structure integrated with a trench isolation structure. The photo sensor includes a substrate of a first conductivity type, at least one trench in the substrate, at least one doped region of the first conductivity type, and at least one doped region of a second conductivity type. Each doped region of the first conductivity type is beneath a corresponding trench. Each doped region of the second conductivity type is sandwiched between the corresponding doped region and the substrate of the first conductivity type. No edge of any doped region of the first or second conductivity type extends to the trench corners. A method of fabricating the photo sensor is also provided.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: December 5, 2006
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Dun-Nian Yaung, Sou-Kuo Wu, Ho-Ching Chien, Chien-Hsien Tseng, Jeng-Shyan Lin
  • Publication number: 20060270091
    Abstract: A photo sensor with pinned photodiode structure integrated with a trench isolation structure. The photo sensor includes a substrate of a first conductivity type, at least one trench in the substrate, at least one doped region of the first conductivity type, and at least one doped region of a second conductivity type. Each doped region of the first conductivity type is beneath a corresponding trench. Each doped region of the second conductivity type is sandwiched between the corresponding doped region and the substrate of the first conductivity type. No edge of any doped region of the first or second conductivity type extends to the trench corners. A method of fabricating the photo sensor is also provided.
    Type: Application
    Filed: July 19, 2006
    Publication date: November 30, 2006
    Inventors: Dun-Nian Yaung, Sou-Kuo Wu, Ho-Ching Chien, Chien-Hsien Tseng, Jeng-Shyan Lin
  • Publication number: 20060148119
    Abstract: The present invention is CMOS image sensor and its method of fabrication. This invention provides an efficient structure to improve the quantum efficiency of a CMOS type photodiode with borderless contact. The image sensor comprises a N-well/P-substrate type photodiode with borderless contact and dielectric structure covering the photodiode region. The dielectric structure is located between the photodiode and the interlevel dielectric (ILD) and is used as a buffer layer for the borderless contact. The method of fabricating a high performance photodiode comprises forming a photodiode in the n-well region of a shallow trench, and embedding a dielectric material between the ILD oxide and the photodiode having a refraction index higher than the ILD oxide.
    Type: Application
    Filed: February 23, 2006
    Publication date: July 6, 2006
    Inventors: Dun-Nian Yaung, Shou-Gwo Wuu, Ho-Ching Chien, Chien-Hsien Tseng, Jeng-Shyan Lin
  • Patent number: 7038232
    Abstract: The present invention is a CMOS image sensor and its method of fabrication. This invention provides an efficient structure to improve the quantum efficiency of a CMOS image sensor with borderless contact. The image sensor comprises a N-well/P-substrate type photodiode with borderless contact and dielectric structure covering the photodiode region. The dielectric structure is located between the photodiode and the interlevel dielectric (ILD) and is used as a buffer layer for the borderless contact. The method of fabricating a high performance photodiode comprises forming a photodiode in the n-well region of a shallow trench, and embedding a dielectric material between the ILD oxide and the photodiode having a refraction index higher than the ILD oxide.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: May 2, 2006
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Dun-Nian Yaung, Shou-Gwo Wuu, Ho-Ching Chen, Chien-Hsien Tseng, Jeng-Shyan Lin
  • Publication number: 20060033127
    Abstract: A photo sensor with pinned photodiode structure integrated with a trench isolation structure. The photo sensor includes a substrate of a first conductivity type, at least one trench in the substrate, at least one doped region of the first conductivity type, and at least one doped region of a second conductivity type. Each doped region of the first conductivity type is beneath a corresponding trench. Each doped region of the second conductivity type is sandwiched between the corresponding doped region and the substrate of the first conductivity type. No edge of any doped region of the first or second conductivity type extends to the trench corners. A method of fabricating the photo sensor is also provided.
    Type: Application
    Filed: August 16, 2004
    Publication date: February 16, 2006
    Inventors: Dun-Nian Yaung, Sou-Kuo Wu, Ho-Ching Chien, Chien-Hsien Tseng, Jeng-Shyan Lin
  • Publication number: 20050133837
    Abstract: Provided are a semiconductor device and a method for its manufacture. In one example, the method includes forming an isolation structure having a first refraction index over a sensor embedded in a substrate. A first layer having a second refraction index that is different from the first refraction index is formed over the isolation structure. The first layer is removed from at least a portion of the isolation structure. A second layer having a third refraction index is formed over the isolation structure after the first layer is removed. The third refraction index is substantially similar to the first refraction index.
    Type: Application
    Filed: April 5, 2004
    Publication date: June 23, 2005
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu Hsu, Dun-Nian Yaung, Shou-Gwo Wuu, Ho-Ching Chien, Chien-Hsien Tseng, Jeng-Shyan Lin
  • Publication number: 20050062118
    Abstract: The present invention is a CMOS image sensor and its method of fabrication. This invention provides an efficient structure to improve the quantum efficiency of a CMOS image sensor with borderless contact. The image sensor comprises a N-well/P-substrate type photodiode with borderless contact and dielectric structure covering the photodiode region. The dielectric structure is located between the photodiode and the interlevel dielectric (ILD) and is used as a buffer layer for the borderless contact. The method of fabricating a high performance photodiode comprises forming a photodiode in the n-well region of a shallow trench, and embedding a dielectric material between the ILD oxide and the photodiode having a refraction index higher than the ILD oxide.
    Type: Application
    Filed: September 24, 2003
    Publication date: March 24, 2005
    Inventors: Dun-Nian Yaung, Shou-Gwo Wuu, Ho-Ching Chien, Chien-Hsien Tseng, Jeng-Shyan Lin
  • Publication number: 20040211987
    Abstract: An image sensor optoelectronic product and a method for fabrication thereof comprise a photodiode region overlapping a source/drain region of the same polarity within a reset metal oxide semiconductor field effect transistor device. The image sensor optoelectronic product also comprises a bridging implant region of the same polarity as the photodiode region and the source/drain region. The bridging implant region overlaps the photodiode region, encompasses the source/drain region and extends laterally into the channel region of the reset metal oxide semiconductor field effect transistor device. The bridging implant region provides the image sensor optoelectronic product with attenuated leakage and attenuated white pixel cell susceptibility.
    Type: Application
    Filed: April 24, 2003
    Publication date: October 28, 2004
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ho-Ching Chien, Shou-Gwo Wuu, Chien-Hsien Tseng, Dun-Nian Yuang, Jeng-Shyan Lin