Patents by Inventor Jennifer A. Doudna

Jennifer A. Doudna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12123015
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: October 22, 2024
    Assignees: The Regents of the University of California, University of Vienna
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Publication number: 20240301376
    Abstract: Provided are compositions and methods that include one or more of: (1) a Class 2 CRISPR/Cas effector protein, a nucleic acid encoding the effector protein, and/or a modified host cell comprising the effector protein (and/or a nucleic acid encoding the same); (2) a CRISPR/Cas guide RNA that binds to and provides sequence specificity to the Class 2 CRISPR/Cas effector protein, a nucleic acid encoding the CRISPR/Cas guide RNA, and/or a modified host cell comprising the CRISPR/Cas guide RNA (and/or a nucleic acid encoding the same); and (3) a CRISPR/Cas transactivating noncoding RNA (trancRNA), a nucleic acid encoding the CRISPR/Cas trancRNA, and/or a modified host cell comprising the CRISPR/Cas trancRNA (and/or a nucleic acid encoding the same).
    Type: Application
    Filed: March 27, 2024
    Publication date: September 12, 2024
    Inventors: Jennifer A. Doudna, David Burstein, Janice S. Chen, Lucas B. Harrington, David Paez-Espino, Jillian F. Banfield
  • Publication number: 20240209352
    Abstract: In one aspect, the present disclosure provides a method for identifying treatment targets relating to tumors. In another aspect, the present disclosure provides a method for identifying biomarkers and molecular features of normal and cancer cells.
    Type: Application
    Filed: February 1, 2023
    Publication date: June 27, 2024
    Inventors: Jennifer A. Doudna, Chun-Hao Huang, Spencer C. Knight, Nami Saghaei
  • Publication number: 20240182953
    Abstract: The present disclosure provides methods for detecting a single-stranded target RNA. The present disclosure provides methods of cleaving a precursor C2c2 guide RNA array into two or more C2c2 guide RNAs. The present disclosure provides a kit for detecting a target RNA in a sample.
    Type: Application
    Filed: October 23, 2023
    Publication date: June 6, 2024
    Inventors: Jennifer A. Doudna, Mitchell Ray O'Connell, Alexandra East-Seletsky, Spencer Charles Knight, James Harrison Doudna Cate
  • Publication number: 20240167009
    Abstract: Provided are compositions and methods that include one or more of: (1) a “CasZ” protein (also referred to as a CasZ polypeptide), a nucleic acid encoding the CasZ protein, and/or a modified host cell comprising the CasZ protein (and/or a nucleic acid encoding the same); (2) a CasZ guide RNA that binds to and provides sequence specificity to the CasZ protein, a nucleic acid encoding the CasZ guide RNA, and/or a modified host cell comprising the CasZ guide RNA (and/or a nucleic acid encoding the same); and (3) a CasZ transactivating noncoding RNA (trancRNA) (referred to herein as a “CasZ trancRNA”), a nucleic acid encoding the CasZ trancRNA, and/or a modified host cell comprising the CasZ trancRNA (and/or a nucleic acid encoding the same).
    Type: Application
    Filed: December 21, 2023
    Publication date: May 23, 2024
    Inventors: Jennifer A. Doudna, David Burstein, Janice S. Chen, Lucas B. Harrington, David Paez-Espino, Jillian F. Banfield
  • Publication number: 20240167052
    Abstract: The present disclosure provides CasX proteins, nucleic acids encoding the CasX proteins, and modified host cells comprising the CasX proteins and/or nucleic acids encoding same. CasX proteins are useful in a variety of applications, which are provided. The present disclosure provides CasX guide RNAs that bind to and provide sequence specificity to the CasX proteins, nucleic acids encoding the CasX guide RNAs, and modified host cells comprising the CasX guide RNAs and/or nucleic acids encoding same. CasX guide RNAs are useful in a variety of applications, which are provided. The present disclosure provides archaeal Cas9 polypeptides and nucleic acids encoding same, as well as their associated archaeal Cas9 guide RNAs and nucleic acids encoding same.
    Type: Application
    Filed: November 17, 2023
    Publication date: May 23, 2024
    Inventors: Jennifer A. Doudna, Jillian F. Banfield, David Burstein, Lucas Benjamin Harrington, Steven C. Strutt
  • Publication number: 20240167023
    Abstract: This disclosure provides for compositions and methods for the use of nucleic acid-targeting nucleic acids and complexes thereof. Genome engineering can refer to altering the genome by deleting, inserting, mutating, or substituting specific nucleic acid sequences. The altering can be gene or location specific. Genome engineering can use nucleases to cut a nucleic acid thereby generating a site for the alteration. Engineering of non-genomic nucleic acid is also contemplated.
    Type: Application
    Filed: May 19, 2023
    Publication date: May 23, 2024
    Applicant: Caribou Biosciences, Inc.
    Inventors: James M. Berger, Matthew Merrill Carter, Paul Daniel Donohoue, Jennifer A. Doudna, Rachel E. Haurwitz, Andrew Paul May
  • Patent number: 11970711
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: April 30, 2024
    Assignees: The Regents of the University of California, University of Vienna
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Patent number: 11970719
    Abstract: Provided are compositions and methods that include one or more of: (1) a Class 2 CRISPR/Cas effector protein, a nucleic acid encoding the effector protein, and/or a modified host cell comprising the effector protein (and/or a nucleic acid encoding the same); (2) a CRISPR/Cas guide RNA that binds to and provides sequence specificity to the Class 2 CRISPR/Cas effector protein, a nucleic acid encoding the CRISPR/Cas guide RNA, and/or a modified host cell comprising the CRISPR/Cas guide RNA (and/or a nucleic acid encoding the same); and (3) a CRISPR/Cas transactivating noncoding RNA (trancRNA), a nucleic acid encoding the CRISPR/Cas trancRNA, and/or a modified host cell comprising the CRISPR/Cas trancRNA (and/or a nucleic acid encoding the same).
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: April 30, 2024
    Assignee: The Regents of the University of California
    Inventors: Jennifer A. Doudna, David Burstein, Janice S. Chen, Lucas B. Harrington, David Paez-Espino, Jillian F. Banfield
  • Publication number: 20240102032
    Abstract: The present disclosure provides CRISPR-Cas effector polypeptides that exhibit enhanced gene editing and/or trans cleavage activity, compared to a wild-type CasPhi polypeptide. The present disclosure provides systems and kits comprising such CRISPR-Cas effector polypeptides. The present disclosure provides methods, including gene editing and diagnostic methods, using a CRISPR-Cas effector polypeptide of the present disclosure.
    Type: Application
    Filed: January 24, 2022
    Publication date: March 28, 2024
    Inventors: Jennifer A. Doudna, Patrick Pausch, Katarzyna Soczek, Steven E. Jacobsen, Zheng Li
  • Publication number: 20240026323
    Abstract: The present disclosure provides methods of modifying a target RNA in a eukaryotic cell. The present disclosure provides methods detecting a target RNA in a eukaryotic cell.
    Type: Application
    Filed: June 20, 2023
    Publication date: January 25, 2024
    Inventors: Jennifer A. Doudna, David Colognori
  • Publication number: 20240026321
    Abstract: The present disclosure provides RNA-guided CRISPR-Cas effector proteins, nucleic acids encoding same, and compositions comprising same. The present disclosure provides ribonucleoprotein complexes comprising: an RNA-guided CRISPR-Cas effector protein of the present disclosure; and a guide RNA. The present disclosure provides methods of modifying a target nucleic acid, using an RNA-guided CRISPR-Cas effector protein of the present disclosure and a guide RNA. The present disclosure provides methods of modulating transcription of a target nucleic acid.
    Type: Application
    Filed: May 8, 2023
    Publication date: January 25, 2024
    Inventors: Jennifer A. Doudna, Basem Al-Shayeb, Jillian F. Banfield, Patrick Pausch
  • Patent number: 11873504
    Abstract: The present disclosure provides CasX proteins, nucleic acids encoding the CasX proteins, and modified host cells comprising the CasX proteins and/or nucleic acids encoding same. CasX proteins are useful in a variety of applications, which are provided. The present disclosure provides CasX guide RNAs that bind to and provide sequence specificity to the CasX proteins, nucleic acids encoding the CasX guide RNAs, and modified host cells comprising the CasX guide RNAs and/or nucleic acids encoding same. CasX guide RNAs are useful in a variety of applications, which are provided. The present disclosure provides archaeal Cas9 polypeptides and nucleic acids encoding same, as well as their associated archaeal Cas9 guide RNAs and nucleic acids encoding same.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: January 16, 2024
    Assignee: The Regents of the University of California
    Inventors: Jennifer A Doudna, Jillian F. Banfield, David Burstein, Lucas Benjamin Harrington, Steven C. Strutt
  • Publication number: 20230407276
    Abstract: The present disclosure provides variant CRISPR-Cas effector polypeptides, as well as engineered guide nucleic acids, and systems comprising the same. The present disclosure provides methods of modifying a target nucleic acid, using a variant CRISPR-Cas effector polypeptide of the present disclosure.
    Type: Application
    Filed: December 1, 2021
    Publication date: December 21, 2023
    Inventors: Jennifer A. Doudna, Evangelina Nogales De La Morena, Jun-Jie Liu, Connor Andrew Tsuchida
  • Patent number: 11840725
    Abstract: The present disclosure provides methods for detecting a single-stranded target RNA. The present disclosure provides methods of cleaving a precursor C2c2 guide RNA array into two or more C2c2 guide RNAs. The present disclosure provides a kit for detecting a target RNA in a sample.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: December 12, 2023
    Assignee: The Regents of the University of California
    Inventors: Jennifer A. Doudna, Mitchell Ray O′Connell, Alexandra East-Seletsky, Spencer Charles Knight, James Harrison Doudna Cate
  • Patent number: 11827919
    Abstract: The present disclosure provides methods for detecting a single-stranded target RNA. The present disclosure provides methods of cleaving a precursor C2c2 guide RNA array into two or more C2c2 guide RNAs. The present disclosure provides a kit for detecting a target RNA in a sample.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: November 28, 2023
    Assignee: The Regents of the University of California
    Inventors: Jennifer A Doudna, Mitchell Ray O'Connell, Alexandra East-Seletsky, Spencer Charles Knight, James Harrison Doudna Cate
  • Patent number: 11814645
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: November 14, 2023
    Assignees: The Regents of the University of California, University of Vienna
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Publication number: 20230357761
    Abstract: Described herein are compositions and systems comprising activators of type III accessory nucleases and methods of using these compositions and systems.
    Type: Application
    Filed: September 20, 2021
    Publication date: November 9, 2023
    Inventors: Jennifer Doudna, Patrick Hsu, David Savage, Tina Y. Liu, Shrutee Jakhanwal, Noam Prywes, Gavin J. Knott, Brittney Wai-Ling Thornton, Dylan C.J. Smock, Emeric J. Charles, Shineui Kim
  • Publication number: 20230348872
    Abstract: The present disclosure provides RNA-guided CRISPR-Cas effector proteins, nucleic acids encoding same, and compositions comprising same. The present disclosure provides ribonucleoprotein complexes comprising: an RNA-guided CRISPR-Cas effector protein of the present disclosure; and a guide RNA. The present disclosure provides methods of modifying a target nucleic acid, using an RNA-guided CRISPR-Cas effector protein of the present disclosure and a guide RNA. The present disclosure provides methods of modulating transcription of a target nucleic acid. The present disclosure provides methods of detecting a target nucleic acid, using an RNA-guided CRISPR-Cas effector protein of the present disclosure and a guide RNA.
    Type: Application
    Filed: September 8, 2021
    Publication date: November 2, 2023
    Inventors: Jennifer A. Doudna, Jillian F. Banfield, Basem Al-Shayeb, Patrick Pausch, Katarzyna Soczek
  • Patent number: 11795472
    Abstract: The present disclosure provides CasX proteins, nucleic acids encoding the CasX proteins, and modified host cells comprising the CasX proteins and/or nucleic acids encoding same. CasX proteins are useful in a variety of applications, which are provided. The present disclosure provides CasX guide RNAs that bind to and provide sequence specificity to the CasX proteins, nucleic acids encoding the CasX guide RNAs, and modified host cells comprising the CasX guide RNAs and/or nucleic acids encoding same. CasX guide RNAs are useful in a variety of applications, which are provided. The present disclosure provides archaeal Cas9 polypeptides and nucleic acids encoding same, as well as their associated archaeal Cas9 guide RNAs and nucleic acids encoding same.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: October 24, 2023
    Assignee: The Regents of the University of California
    Inventors: Jennifer A. Doudna, Jillian Banfield, David Burstein, Lucas Benjamin Harrington, Steven C. Strutt