Patents by Inventor Jennifer A. Doudna

Jennifer A. Doudna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11739309
    Abstract: The present disclosure provides RNA-guided CRISPR-Cas effector proteins, nucleic acids encoding same, and compositions comprising same. The present disclosure provides ribonucleoprotein complexes comprising: an RNA-guided CRISPR-Cas effector protein of the present disclosure; and a guide RNA. The present disclosure provides methods of modifying a target nucleic acid, using an RNA-guided CRISPR-Cas effector protein of the present disclosure and a guide RNA. The present disclosure provides methods of modulating transcription of a target nucleic acid.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: August 29, 2023
    Assignee: The Regents of the University of California
    Inventors: Jennifer A. Doudna, Basem Al-Shayeb, Jillian F. Banfield, Patrick Pausch
  • Publication number: 20230227859
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Application
    Filed: November 10, 2022
    Publication date: July 20, 2023
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Publication number: 20230212614
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Application
    Filed: December 9, 2022
    Publication date: July 6, 2023
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Patent number: 11692184
    Abstract: The present disclosure provides RNA-guided endonucleases, nucleic acids encoding same, and compositions comprising same. The present disclosure provides ribonucleoprotein complexes comprising: an RNA-guided endonuclease of the present disclosure; and a guide RNA. The present disclosure provides methods of modifying a target nucleic acid, using an RNA-guided endonuclease of the present disclosure and a guide RNA.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: July 4, 2023
    Assignee: The regents of the university of california
    Inventors: Nikos C. Kyrpides, Jennifer A. Doudna, Lucas Benjamin Harrington, David Paez-Espino
  • Patent number: 11685909
    Abstract: The present disclosure provides RNA-guided CRISPR-Cas effector proteins, nucleic acids encoding same, and compositions comprising same. The present disclosure provides ribonucleoprotein complexes comprising: an RNA-guided CRISPR-Cas effector protein of the present disclosure; and a guide RNA. The present disclosure provides methods of modifying a target nucleic acid, using an RNA-guided CRISPR-Cas effector protein of the present disclosure and a guide RNA. The present disclosure provides methods of modulating transcription of a target nucleic acid.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: June 27, 2023
    Assignee: The Regents of the University of California
    Inventors: Jennifer A. Doudna, Basem Al-Shayeb, Jillian F. Banfield, Patrick Pausch
  • Publication number: 20230193255
    Abstract: The present disclosure provides a virus-like particle (VLP) comprising a therapeutic polypeptide, and nucleic acids comprising nucleotide sequences encoding the components of the VLP. The present disclosure provides a virus-like particle (VLP) comprising a CRISPR/Cas effector polypeptide, and nucleic acids comprising nucleotide sequences encoding the components of the VLP. The present disclosure provides a system for making a VLP of the present disclosure, as well as methods of making the VLP.
    Type: Application
    Filed: November 15, 2019
    Publication date: June 22, 2023
    Inventors: Jennifer A. Doudna, Jennifer Rose Hamilton
  • Patent number: 11674159
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: June 13, 2023
    Assignees: The Regents of the University of California, University of Vienna
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Patent number: 11661599
    Abstract: The present invention relates to a CRISPR-Cas based system for targeting nucleic acid sequences. In part, the invention relates to synthetic guiding components for targeting single-stranded sequences, as well as design principles for constructing such components. Also described herein are methods of employing such components, e.g., to repress or activate a desired target within the subject.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: May 30, 2023
    Assignees: National Technology & Engineering Solutions of Sandia, LLC, The Regents of the University of California
    Inventors: Oscar Negrete, Jennifer A. Doudna, Steven C. Strutt
  • Publication number: 20230159943
    Abstract: The present disclosure relates to CRISPR-Cas systems that utilize Cas 12J for editing nucleic acids in plants. Methods and compositions for using these systems for editing nucleic acids in plants are provided herein.
    Type: Application
    Filed: April 20, 2021
    Publication date: May 25, 2023
    Applicant: The Regents of the University of California
    Inventors: Steve E. JACOBSEN, Zheng LI, Jennifer DOUDNA, Patrick PAUSH, Basem AL-SHAYEB
  • Patent number: 11634730
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: April 25, 2023
    Assignees: The Regents of the University of California, University of Vienna
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Publication number: 20230082584
    Abstract: The present disclosure provides methods for testing whether a target protein regulates viral RNA translation. The methods comprise a) introducing into a test host cell (where the test host cell comprises a catalytically inactive or a catalytically active CRISPR/Cas effector polypeptide): i) a reporter nucleic acid comprising a nucleotide sequence encoding a bicistronic translation monitor; and ii) a regulatory nucleic acid comprising a nucleotide sequence encoding a single guide RNA (sgRNA) that comprises a targeting sequence that specifically binds to a target sequence within a nucleic acid encoding the target protein; and b) detecting expression of the reporter proteins to determine whether a target protein regulates viral RNA translation via a Cap-dependent element or a Cap-independent element based on the expression of the reporter proteins in the test host cell as compared to the expression in the control host cell. Kits for conducting the methods disclosed herein are also provided.
    Type: Application
    Filed: March 29, 2021
    Publication date: March 16, 2023
    Inventors: Jennifer A. Doudna, Chun-Hao Huang, Ko-Chuan Lee
  • Publication number: 20230068726
    Abstract: The present disclosure provides a transposon system comprising: i) a nucleotide sequence encoding polypeptides that form a CRISPR-associated transposase complex; ii) a nucleotide sequence encoding a guide RNA; and iii) a transposon, or an insertion site for a transposon, flanked by CAST complex recognition sites. The present disclosure provides a prokaryotic cell comprising a subject transposon system. The transposon system is useful for editing the genome of a target prokaryotic cell. The present disclosure provides methods for editing the genome of a target prokaryotic cell. The present disclosure further provides systems and methods for identifying, within a heterogeneous population of prokaryotic cells, prokaryotic species that are susceptible to genetic modification and gene editing.
    Type: Application
    Filed: January 28, 2021
    Publication date: March 2, 2023
    Inventors: Jennifer A. Doudna, Jillian F. Banfield, Brady F. Cress, Benjamin E. Rubin, Spencer Diamond, Adam M. Deutschbauer
  • Patent number: 11584930
    Abstract: In one aspect, the present disclosure provides a method for identifying treatment targets relating to tumors. In another aspect, the present disclosure provides a method for identifying biomarkers and molecular features of normal and cancer cells.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: February 21, 2023
    Assignee: The Regents of the University of California
    Inventors: Jennifer A. Doudna, Chun-Hao Huang, Spencer C. Knight, Nami Saghaei
  • Patent number: 11578313
    Abstract: The present disclosure provides RNA-guided CRISPR-Cas effector proteins, nucleic acids encoding same, and compositions comprising same. The present disclosure provides ribonucleoprotein complexes comprising: an RNA-guided CRISPR-Cas effector protein of the present disclosure; and a guide RNA. The present disclosure provides methods of modifying a target nucleic acid, using an RNA-guided CRISPR-Cas effector protein of the present disclosure and a guide RNA. The present disclosure provides methods of modulating transcription of a target nucleic acid.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: February 14, 2023
    Assignee: The Regents of the University of California
    Inventors: Jennifer A. Doudna, Basem Al-Shayeb, Jillian F. Banfield, Patrick Pausch
  • Publication number: 20230028178
    Abstract: The present disclosure provides RNA-guided CRISPR-Cas effector proteins, nucleic acids encoding same, and compositions comprising same. The present disclosure provides ribonucleoprotein complexes comprising: an RNA-guided CRISPR-Cas effector protein of the present disclosure; and a guide RNA. The present disclosure provides methods of modifying a target nucleic acid, using an RNA-guided CRISPR-Cas effector protein of the present disclosure and a guide RNA.
    Type: Application
    Filed: December 22, 2020
    Publication date: January 26, 2023
    Inventors: Jennifer A. Doudna, Jillian F. Banfield, Basem Al-Shayeb
  • Patent number: 11549127
    Abstract: The present disclosure provides a DNA-targeting RNA that comprises a targeting sequence and, together with a modifying polypeptide, provides for site-specific modification of a target DNA and/or a polypeptide associated with the target DNA. The present disclosure further provides site-specific modifying polypeptides. The present disclosure further provides methods of site-specific modification of a target DNA and/or a polypeptide associated with the target DNA The present disclosure provides methods of modulating transcription of a target nucleic acid in a target cell, generally involving contacting the target nucleic acid with an enzymatically inactive Cas9 polypeptide and a DNA-targeting RNA. Kits and compositions for carrying out the methods are also provided. The present disclosure provides genetically modified cells that produce Cas9; and Cas9 transgenic non-human multicellular organisms.
    Type: Grant
    Filed: March 24, 2022
    Date of Patent: January 10, 2023
    Assignees: The Regents of the University of California, University of Vienna, Emmanuelle Charpentier
    Inventors: Jennifer A. Doudna, Martin Jinek, Krzysztof Chylinski, Emmanuelle Charpentier
  • Publication number: 20220403379
    Abstract: The present disclosure provides virus-like particles (VLPs) comprising: i) a CRISPR-Cas effector polypeptide; ii) a recombinant lentivirus comprising a nucleotide sequence encoding a therapeutic polypeptide having a length of from about 250 amino acids to about 3,000 amino acids, where the VLP comprises a pseudotyping viral glycoprotein and/or a polypeptide that provides for binding to a target cell. The present disclosure provides systems for producing a VLP. The present disclosure provides methods of delivering a therapeutic protein, using a VLP of the present disclosure.
    Type: Application
    Filed: May 25, 2022
    Publication date: December 22, 2022
    Inventors: Jennifer A. Doudna, Jennifer Hamilton, Connor Tsuchida
  • Patent number: 11530398
    Abstract: The present disclosure provides RNA-guided CRISPR-Cas effector proteins, nucleic acids encoding same, and compositions comprising same. The present disclosure provides ribonucleoprotein complexes comprising: an RNA-guided CRISPR-Cas effector protein of the present disclosure; and a guide RNA. The present disclosure provides methods of modifying a target nucleic acid, using an RNA-guided CRISPR-Cas effector protein of the present disclosure and a guide RNA. The present disclosure provides methods of modulating transcription of a target nucleic acid.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: December 20, 2022
    Assignee: the regents of the university of california
    Inventors: Jennifer A. Doudna, Basem Al-Shayeb, Jillian F. Banfield, Patrick Pausch
  • Publication number: 20220396812
    Abstract: The present disclosure provides CasY proteins, nucleic acids encoding the CasY proteins, and modified host cells comprising the CasY proteins and/or nucleic acids encoding same. CasY proteins are useful in a variety of applications, which are provided. The present disclosure provides CasY guide RNAs that bind to and provide sequence specificity to the CasY proteins, nucleic acids encoding the CasY guide RNAs, and modified host cells comprising the CasY guide RNAs and/or nucleic acids encoding same. CasY guide RNAs are useful in a variety of applications, which are provided. The present disclosure provides methods of identifying a CRISPR RNA-guided endonuclease.
    Type: Application
    Filed: May 19, 2022
    Publication date: December 15, 2022
    Inventors: Jennifer A. Doudna, Jillian F. Banfield, David Burstein, Lucas Benjamin Harrington
  • Publication number: 20220340889
    Abstract: The present disclosure provides RNA-guided CRISPR-Cas effector proteins, nucleic acids encoding same, and compositions comprising same. The present disclosure provides ribonucleoprotein complexes comprising: an RNA-guided CRISPR-Cas effector protein of the present disclosure; and a guide RNA. The present disclosure provides methods of modifying a target nucleic acid, using an RNA-guided CRISPR-Cas effector protein of the present disclosure and a guide RNA. The present disclosure provides methods of modulating transcription of a target nucleic acid.
    Type: Application
    Filed: May 16, 2022
    Publication date: October 27, 2022
    Inventors: Jennifer A. Doudna, Basem Al-Shayeb, Jillian F. Banfield, Patrick Pausch