Patents by Inventor Jennifer O'Loughlin

Jennifer O'Loughlin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10323323
    Abstract: A gas delivery system includes a first valve including an inlet that communicates with a first gas source. A first inlet of a second valve communicates with an outlet of the first valve and a second inlet of the second valve communicates with a second gas source. An inlet of a third valve communicates with a third gas source. A connector includes a first gas channel and a cylinder defining a second gas channel. The cylinder and the first gas channel collectively define a flow channel between an outer surface of the cylinder and an inner surface of the first gas channel. The flow channel communicates with the outlet of the third valve and the first end of the second gas channel. A third gas channel communicates with the second gas channel, with the outlet of the second valve and with a gas distribution device of a processing chamber.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: June 18, 2019
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Ramesh Chandrasekharan, Jennifer O'Loughlin, Saangrut Sangplung, Shankar Swaminathan, Frank Pasquale, Chloe Baldasseroni, Adrien LaVoie
  • Publication number: 20170175269
    Abstract: A gas delivery system includes a first valve including an inlet that communicates with a first gas source. A first inlet of a second valve communicates with an outlet of the first valve and a second inlet of the second valve communicates with a second gas source. An inlet of a third valve communicates with a third gas source. A connector includes a first gas channel and a cylinder defining a second gas channel. The cylinder and the first gas channel collectively define a flow channel between an outer surface of the cylinder and an inner surface of the first gas channel. The flow channel communicates with the outlet of the third valve and the first end of the second gas channel. A third gas channel communicates with the second gas channel, with the outlet of the second valve and with a gas distribution device of a processing chamber.
    Type: Application
    Filed: March 8, 2017
    Publication date: June 22, 2017
    Inventors: Ramesh Chandrasekharan, Jennifer O'Loughlin, Saangrut Sangplung, Shankar Swaminathan, Frank Pasquale, Chloe Baldasseroni, Adrien LaVoie
  • Patent number: 9631276
    Abstract: A gas delivery system includes a first valve including an inlet that communicates with a first gas source. A first inlet of a second valve communicates with an outlet of the first valve and a second inlet of the second valve communicates with a second gas source. An inlet of a third valve communicates with a third gas source. A connector includes a first gas channel and a cylinder defining a second gas channel. The cylinder and the first gas channel collectively define a flow channel between an outer surface of the cylinder and an inner surface of the first gas channel. The flow channel communicates with the outlet of the third valve and the first end of the second gas channel. A third gas channel communicates with the second gas channel, with the outlet of the second valve and with a gas distribution device of a processing chamber.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: April 25, 2017
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Ramesh Chandrasekharan, Jennifer O'Loughlin, Saangrut Sangplung, Shankar Swaminathan, Frank Pasquale, Chloe Baldasseroni, Adrien LaVoie
  • Publication number: 20170016115
    Abstract: A gas delivery system includes a first valve including an inlet that communicates with a first gas source. A first inlet of a second valve communicates with an outlet of the first valve and a second inlet of the second valve communicates with a second gas source. An inlet of a third valve communicates with a third gas source. A connector includes a first gas channel and a cylinder defining a second gas channel. The cylinder and the first gas channel collectively define a flow channel between an outer surface of the cylinder and an inner surface of the first gas channel. The flow channel communicates with the outlet of the third valve and the first end of the second gas channel. A third gas channel communicates with the second gas channel, with the outlet of the second valve and with a gas distribution device of a processing chamber.
    Type: Application
    Filed: July 22, 2015
    Publication date: January 19, 2017
    Inventors: Ramesh Chandrasekharan, Jennifer O'Loughlin, Saangrut Sangplung, Shankar Swaminathan, Frank Pasquale, Chloe Baldasseroni, Adrien LaVoie
  • Patent number: 9399228
    Abstract: A substrate processing system includes a showerhead that comprises a head portion and a stem portion and that delivers precursor gas to a processing chamber. A baffle includes a base portion having an outer diameter that is greater than an outer diameter of the head portion of the showerhead, that comprises a dielectric material and that is arranged between the head portion of the showerhead and an upper surface of the processing chamber.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: July 26, 2016
    Assignee: NOVELLUS SYSTEMS, INC.
    Inventors: Patrick Breiling, Kevin Gerber, Jennifer O'Loughlin, Nagraj Shankar, Pramod Subramonium
  • Patent number: 9028924
    Abstract: Methods of forming a film stack may include the plasma accelerated deposition of a silicon nitride film formed from the reaction of nitrogen containing precursor with silicon containing precursor, the plasma accelerated substantial elimination of silicon containing precursor from the processing chamber, the plasma accelerated deposition of a silicon oxide film atop the silicon nitride film formed from the reaction of silicon containing precursor with oxidant, and the plasma accelerated substantial elimination of oxidant from the processing chamber. Process station apparatuses for forming a film stack of silicon nitride and silicon oxide films may include a processing chamber, one or more gas delivery lines, one or more RF generators, and a system controller having machine-readable media with instructions for operating the one or more gas delivery lines, and the one or more RF generators.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: May 12, 2015
    Assignee: Novellus Systems, Inc.
    Inventors: Jason Haverkamp, Pramod Subramonium, Joe Womack, Dong Niu, Keith Fox, John Alexy, Patrick Breiling, Jennifer O'Loughlin, Mandyam Sriram, George Andrew Antonelli, Bart van Schravendijk
  • Publication number: 20140217193
    Abstract: A substrate processing system includes a showerhead that comprises a head portion and a stem portion and that delivers precursor gas to a processing chamber. A baffle includes a base portion having an outer diameter that is greater than an outer diameter of the head portion of the showerhead, that comprises a dielectric material and that is arranged between the head portion of the showerhead and an upper surface of the processing chamber.
    Type: Application
    Filed: February 6, 2013
    Publication date: August 7, 2014
    Applicant: Novellus Systems, Inc.
    Inventors: Patrick Breiling, Kevin Gerber, Jennifer O'Loughlin, Nagraj Shankar, Pramod Subramonium
  • Patent number: 8741394
    Abstract: Methods for depositing film stacks by plasma enhanced chemical vapor deposition are described. In one example, a method for depositing a film stack on a substrate, wherein the film stack includes films of different compositions and the deposition is performed in a process station in-situ, is provided. The method includes, in a first plasma-activated film deposition phase, depositing a first layer of film having a first film composition on the substrate; in a second plasma-activated deposition phase, depositing a second layer of film having a second film composition on the first layer of film; and sustaining the plasma while transitioning a composition of the plasma from the first plasma-activated film deposition phase to the second plasma-activated film deposition phase.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: June 3, 2014
    Assignee: Novellus Systems, Inc.
    Inventors: Jason Haverkamp, Pramod Subramonium, Joe Womack, Dong Niu, Keith Fox, John Alexy, Patrick Breiling, Jennifer O'Loughlin, Mandyam Sriram, George Andrew Antonelli, Bart van Schravendijk
  • Patent number: 8709551
    Abstract: Methods and hardware for depositing ultra-smooth silicon-containing films and film stacks are described. In one example, an embodiment of a method for forming a silicon-containing film on a substrate in a plasma-enhanced chemical vapor deposition apparatus is disclosed, the method including supplying a silicon-containing reactant to the plasma-enhanced chemical vapor deposition apparatus; supplying a co-reactant to the plasma-enhanced chemical vapor deposition apparatus; supplying a capacitively-coupled plasma to a process station of the plasma-enhanced chemical vapor deposition apparatus, the plasma including silicon radicals generated from the silicon-containing reactant and co-reactant radicals generated from the co-reactant; and depositing the silicon-containing film on the substrate, the silicon-containing film having a refractive index of between 1.4 and 2.1, the silicon-containing film further having an absolute roughness of less than or equal to 4.5 ? as measured on a silicon substrate.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: April 29, 2014
    Assignee: Novellus Systems, Inc.
    Inventors: Keith Fox, Dong Niu, Joe Womack, Mandyam Sriram, George Andrew Antonelli, Bart van Schravendijk, Jennifer O'Loughlin
  • Publication number: 20130171834
    Abstract: Disclosed herein are methods of forming a film stack which may include the plasma accelerated deposition of a silicon nitride film formed from the reaction of nitrogen containing precursor with silicon containing precursor, the plasma accelerated substantial elimination of silicon containing precursor from the processing chamber, the plasma accelerated deposition of a silicon oxide film atop the silicon nitride film formed from the reaction of silicon containing precursor with oxidant, and the plasma accelerated substantial elimination of oxidant from the processing chamber. Also disclosed herein are process station apparatuses for forming a film stack of silicon nitride and silicon oxide films which may include a processing chamber, one or more gas delivery lines, one or more RF generators, and a system controller having machine-readable media with instructions for operating the one or more gas delivery lines, and the one or more RF generators.
    Type: Application
    Filed: November 7, 2012
    Publication date: July 4, 2013
    Inventors: Jason Haverkamp, Pramod Subramonium, Joe Womack, Dong Niu, Keith Fox, John Alexy, Patrick Breiling, Jennifer O'Loughlin, Mandyam Spiram, George Andrew Antonelli, Bart van Schravendijk
  • Publication number: 20130157466
    Abstract: The embodiments herein relate to plasma-enhanced chemical vapor deposition methods and apparatus for depositing silicon nitride on a substrate. The disclosed methods provide silicon nitride films having wet etch rates (e.g., in dilute hydrofluoric acid or hot phosphoric acid) suitable for certain applications such as vertical memory devices. Further, the methods provide silicon nitride films having defined levels of internal stress suitable for the applications in question. These silicon nitride film characteristics can be set or tuned by controlling, for example, the composition and flow rates of the precursors, as well as the RF power supplied to the plasma and the pressure in the reactor. In certain embodiments, a boron-containing precursor is added.
    Type: Application
    Filed: February 13, 2013
    Publication date: June 20, 2013
    Inventors: Keith Fox, Dong Niu, Joseph L. Womack, Mandyam Sriram, George Andrew Antonelli, Bart J. van Schravendijk, Jennifer O'Loughlin
  • Patent number: 8268722
    Abstract: Adhesive layers residing at an interface between metal lines and dielectric diffusion barrier (or etch stop) layers are used to improve electromigration performance of interconnects. Adhesion layers are formed by depositing a precursor layer of metal-containing material (e.g., material containing Al, Ti, Ca, Mg, etc.) over an exposed copper line, and converting the precursor layer to a passivated layer (e.g., nitridized layer). For example, a substrate containing exposed copper line having exposed Cu—O bonds is contacted with trimethylaluminum to form a precursor layer having Al—O bonds and Al—C bonds on copper surface. The precursor layer is then treated to remove residual organic substituents and to form Al—N, Al—H bonds or both. The treatment can include direct plasma treatment, remote plasma treatment, UV-treatment, and thermal treatment with a gas such as NH3, H2, N2, and mixtures thereof. A dielectric diffusion barrier layer is then deposited.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: September 18, 2012
    Assignee: Novellus Systems, Inc.
    Inventors: Jengyi Yu, Hui-Jung Wu, Girish Dixit, Bart van Schravendijk, Pramod Subramonium, Gengwei Jiang, George Andrew Antonelli, Jennifer O'loughlin
  • Patent number: 8217513
    Abstract: Embodiments related to the cleaning of interface surfaces in a semiconductor wafer fabrication process via remote plasma processing are disclosed herein. For example, in one disclosed embodiment, a semiconductor processing apparatus includes a processing chamber, a load lock coupled to the processing chamber via a transfer port, a wafer pedestal disposed in the load lock and configured to support a wafer in the load lock, a remote plasma source configured to provide a remote plasma to the load lock, and an ion filter disposed between the remote plasma source and the wafer pedestal.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: July 10, 2012
    Assignee: Novellus Systems, Inc.
    Inventors: George Andrew Antonelli, Jennifer O'Loughlin, Tony Xavier, Mandyam Sriram, Bart van Schravendijk, Vishwanathan Rangarajan, Seshasayee Varadarajan, Bryan L. Buckalew
  • Publication number: 20120142172
    Abstract: Smooth silicon and silicon germanium films are deposited by plasma enhanced chemical vapor deposition (PECVD). The films are characterized by roughness (Ra) of less than about 4 ?. In some embodiments, smooth silicon films are undoped and doped polycrystalline silicon films. The dopants can include boron, phosphorus, and arsenic. In some embodiments the smooth polycrystalline silicon films are also highly conductive. For example, boron-doped polycrystalline silicon films having resistivity of less than about 0.015 Ohm cm and Ra of less than about 4 ? can be deposited by PECVD. In some embodiments smooth silicon films are incorporated into stacks of alternating layers of doped and undoped polysilicon, or into stacks of alternating layers of silicon oxide and doped polysilicon employed in memory devices. Smooth films can be deposited using a process gas having a low concentration of silicon-containing precursor and/or a process gas comprising a silicon-containing precursor and H2.
    Type: Application
    Filed: December 7, 2011
    Publication date: June 7, 2012
    Inventors: Keith FOX, Mandyam SRIRAM, Bart VAN SCHRAVENDIJK, Jennifer O'LOUGHLIN, Joe WOMACK
  • Patent number: 8084339
    Abstract: Embodiments related to the cleaning of interface surfaces in a semiconductor wafer fabrication process via remote plasma processing are disclosed herein. For example, in one disclosed embodiment, a semiconductor processing apparatus includes a processing chamber, a load lock coupled to the processing chamber via a transfer port, a wafer pedestal disposed in the load lock and configured to support a wafer in the load lock, a remote plasma source configured to provide a remote plasma to the load lock, and an ion filter disposed between the remote plasma source and the wafer pedestal.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: December 27, 2011
    Assignee: Novellus Systems, Inc.
    Inventors: George Andrew Antonelli, Jennifer O'Loughlin, Tony Xavier, Mandyam Sriram, Bart Van Schravendijk, Vishwanathan Rangarajan, Seshasayee Varadarajan, Bryan L. Buckalew
  • Publication number: 20110236594
    Abstract: Methods and hardware for depositing film stacks in a process tool in-situ (i.e., without a vacuum break or air exposure) are described. In one example, a method for depositing, on a substrate, a film stack including films of different compositions in-situ in a process station using a plasma is described, the method including, in a first plasma-activated film deposition phase, depositing a first layer of film having a first film composition on the substrate; in a second plasma-activated deposition phase, depositing a second layer of film having a second film composition on the first layer of film; and sustaining the plasma while transitioning a composition of the plasma from the first plasma-activated film deposition phase to the second plasma-activated film deposition phase.
    Type: Application
    Filed: December 16, 2010
    Publication date: September 29, 2011
    Inventors: Jason Haverkamp, Pramod Subramonium, Joe Womack, Dong Niu, Keith Fox, John Alexy, Patrick Breiling, Jennifer O'Loughlin, Mandyam Sriram, George Andrew Antonelli, Bart van Schravendijk
  • Publication number: 20110236600
    Abstract: Methods and hardware for depositing ultra-smooth silicon-containing films and film stacks are described. In one example, an embodiment of a method for forming a silicon-containing film on a substrate in a plasma-enhanced chemical vapor deposition apparatus is disclosed, the method including supplying a silicon-containing reactant to the plasma-enhanced chemical vapor deposition apparatus; supplying a co-reactant to the plasma-enhanced chemical vapor deposition apparatus; supplying a capacitively-coupled plasma to a process station of the plasma-enhanced chemical vapor deposition apparatus, the plasma including silicon radicals generated from the silicon-containing reactant and co-reactant radicals generated from the co-reactant; and depositing the silicon-containing film on the substrate, the silicon-containing film having a refractive index of between 1.4 and 2.1, the silicon-containing film further having an absolute roughness of less than or equal to 4.5 ? as measured on a silicon substrate.
    Type: Application
    Filed: December 16, 2010
    Publication date: September 29, 2011
    Inventors: Keith Fox, Dong Niu, Joe Womack, Mandyam Sriram, George Andrew Antonelli, Bart van Schravendijk, Jennifer O'Loughlin
  • Publication number: 20110120377
    Abstract: Embodiments related to the cleaning of interface surfaces in a semiconductor wafer fabrication process via remote plasma processing are disclosed herein. For example, in one disclosed embodiment, a semiconductor processing apparatus comprises a processing chamber, a load lock coupled to the processing chamber via a transfer port, a wafer pedestal disposed in the load lock and configured to support a wafer in the load lock, a remote plasma source configured to provide a remote plasma to the load lock, and an ion filter disposed between the remote plasma source and the wafer pedestal.
    Type: Application
    Filed: February 2, 2011
    Publication date: May 26, 2011
    Inventors: George Andrew Antonelli, Jennifer O'Loughlin, Tony Xavier, Mandyam Sriram, Bart Van Schravendijk, Vishwanathan Rangarajan, Seshasayee Varadarajan, Bryan L. Buckalew
  • Patent number: 7858510
    Abstract: Protective caps residing at an interface between metal lines and dielectric diffusion barrier (or etch stop) layers are used to improve electromigration performance of interconnects. Protective caps are formed by depositing a first layer of aluminum-containing material over an exposed copper line by treating an oxide-free copper surface with an organoaluminum compound in an absence of plasma at a substrate temperature of at least about 350° C. The formed aluminum-containing layer is passivated either partially or completely in a chemical conversion which forms Al—N, Al—O or both Al—O and Al—N bonds in the layer. Passivation is performed in some embodiments by contacting the substrate having an exposed first layer with an oxygen-containing reactant and/or nitrogen-containing reactant in the absence of plasma. Protective caps can be formed on substrates comprising exposed ULK dielectric.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: December 28, 2010
    Assignee: Novellus Systems, Inc.
    Inventors: Ananda Banerji, George Andrew Antonelli, Jennifer O'loughlin, Mandyam Sriram, Bart van Schravendijk, Seshasayee Varadarajan
  • Publication number: 20100317198
    Abstract: Embodiments related to the cleaning of interface surfaces in a semiconductor wafer fabrication process via remote plasma processing are disclosed herein. For example, in one disclosed embodiment, a semiconductor processing apparatus comprises a processing chamber, a load lock coupled to the processing chamber via a transfer port, a wafer pedestal disposed in the load lock and configured to support a wafer in the load lock, and a remote plasma source configured to provide a remote plasma to the load lock.
    Type: Application
    Filed: July 31, 2009
    Publication date: December 16, 2010
    Applicant: NOVELLUS SYSTEMS, INC.
    Inventors: George Andrew Antonelli, Jennifer O' Loughlin, Tony Xavier, Mandyam Sriram, Bart van Schravendijk, Vishwanathan Rangarajan, Seshasayee Varadarajan, Bryan L. Buckalew