Patents by Inventor Jeo-young Shim

Jeo-young Shim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070003967
    Abstract: A method of manufacturing a DNA (deoxyribonucleic acid) chip is provided. The DNA chip has a plurality of transistors formed on a substrate and an organic layer and a DNA probe sequentially stacked on a gate of the transistor. The method includes forming an inter-layer insulation layer on the substrate to cover the transistors, planarizing the inter-layer insulation layer, forming at least two contact holes exposing gate electrodes of the transistors in the inter-layer insulation layer, selectively forming organic layers on the exposed gate electrodes, attaching a first DFR (dry film resist) layer to the upper surface of the inter-layer insulation layer to cover the contact holes, removing a portion of the first DFR layer covering a first contact hole among the contact holes, attaching a first DNA probe to the organic layers in the first contact hole, and removing a remaining portion of the first DFR layer.
    Type: Application
    Filed: June 30, 2006
    Publication date: January 4, 2007
    Inventors: Jeo-young Shim, Soo-suk Lee, Chin-sung Park, Kyu-youn Hwang
  • Publication number: 20060257627
    Abstract: Provided is a method of manufacturing a microfludic device in which coating film patterns made of a coupling agent are formed in microchannels. The method includes: forming the coating film patterns made of the coupling agent on a Si substrate; selectively oxidizing coupling agent-free regions of the Si substrate having thereon the coating film patterns made of the coupling agent using an oxidizing agent with an oxidation potential from 1 to 2 V; and adhering a PDMS (polydimethylsiloxane) microchannel structure to the selectively oxidized Si substrate to form the microchannels.
    Type: Application
    Filed: April 28, 2006
    Publication date: November 16, 2006
    Inventors: Jeo-young Shim, Soo-suk Lee, Sung-ouk Jung, Ji-na Namgoong, Kyu-tae Yoo
  • Publication number: 20060246478
    Abstract: Provided is a method of sensing biomolecules using a bioFET, the method including: forming a layer including Au on a gate of the bioFET; forming a probe immobilized on a substrate separated from the gate by a predetermined distance, and a biomolecule having a thiol group (—SH) which is incompletely bonded to the probe; reacting the probe with a sample including a target molecule; and measuring a current flowing in a channel region between a source and a drain of the bioFET.
    Type: Application
    Filed: February 2, 2006
    Publication date: November 2, 2006
    Inventors: Kyu-tae Yoo, Sung-ouk Jung, Jun-hong Min, Ji-na Namgoong, Soo-hyung Choi, Jeo-young Shim
  • Publication number: 20060205013
    Abstract: Provided is a field effect transistor (FET) type biosensor including a source electrode, a gate, and a drain electrode. A ligand that can bind to a side of a nucleic acid is added to the surface of the gate. In a conventional FET type biosensor, it is difficult to detect a signal within the debye length because a target nucleic acid is directly fixed to the surface of a gate of the conventional FET. However, in the present invention, this problem can be overcome and the debye length can be increased by treating the surface of a gate of an FET sensor with a ligand that can bind to a side of a nucleic acid. The ligand can be adsorbed onto the surface of the gate. In this case, the nucleic acid is adsorbed parallel to the surface of the gate, not perpendicular to the surface of the gate, thus generating an effective depletion region. In addition, hybridization efficiency can be increased because a hybridized sample can be injected into an FET sensor at high ionic strength.
    Type: Application
    Filed: January 20, 2006
    Publication date: September 14, 2006
    Inventors: Jeo-young Shim, Su-hyeon Kim, Kyu-tae Yoo, Sung-ouk Jung, Joon-shik Park
  • Publication number: 20060189725
    Abstract: Provided is a calibration apparatus for an optical scanner, including a substrate on which a molecule capable of forming an excimer is immobilized. A method of manufacturing the calibration apparatus and a method of calibrating an optical scanner using the calibration apparatus are also provided.
    Type: Application
    Filed: January 25, 2006
    Publication date: August 24, 2006
    Inventors: Jeo-young Shim, Sung-ouk Jung, Ji-na Namgoong, Kyu-tae Yoo, Jang-seok Ma
  • Publication number: 20060177874
    Abstract: Provided are a sensing switch and a sensing method using the same. The sensing switch includes: a substrate; a supporter on the substrate; a sensing plate that is connected to a side of the supporter and is in parallel with the substrate by a predetermined distance; a receptor binding region on an upper surface of an end portion of the sensing plate; an electric or magnetic field generation device that induces deflection of the sensing plate when a receptor bound to the receptor binding region is selectively bound to an electrically or magnetically active ligand; and a pair of switching electrodes that are separated by a predetermined distance and is connected when the sensing plate contacts the substrate due to the deflection of the sensing plate. A target material need not be labelled, a signal processing of a fluorescent or electrical detection signal using an analysis apparatus is not required, and a signal can be directly decoded by confirming whether a current flows through the switch.
    Type: Application
    Filed: February 3, 2006
    Publication date: August 10, 2006
    Inventors: Kyu-tae Yoo, Joon-ho Kim, Jun-hong Min, Sung-ouk Jung, Ji-na Namgoong, Kui-hyun Kim, Jeo-young Shim
  • Publication number: 20060166241
    Abstract: Provided are nucleic acid isolation unit and method. The method includes immobilizing an aromatic compound-containing nucleic acid intercalator on a solid support; contacting a first buffer solution containing a nucleic acid sample to be purified to the intercalator immobilized on the solid support to bind the intercalator with nucleic acids contained in the nucleic acid sample; cleaning the resultant structure where the nucleic acids are bound to the intercalator immobilized on the solid support; and eluting the nucleic acids with a second buffer solution.
    Type: Application
    Filed: January 5, 2006
    Publication date: July 27, 2006
    Inventors: Jeo-young Shim, Kyu-youn Hwang, Joon-ho Kim, Sung-ouk Jung, Kyu-tae Yoo, Joon-shik Park, Ji-na Namgoong
  • Publication number: 20060154284
    Abstract: A method of isolating nucleic acid from a sample containing nucleic acid is provided. The method includes contacting the sample with a bifunctional material that contains an amino group and a carboxyl group and is positively charged at a first pH to allow binding of the nucleic acid to the bifunctional material; and extracting the nucleic acid at a second pH higher than the first pH from the complex.
    Type: Application
    Filed: December 23, 2005
    Publication date: July 13, 2006
    Inventors: Kyu-youn Hwang, Joon-ho Kim, Chang-eun Yoo, Hun-joo Lee, Hee-kyun Lim, Sung-young Jeong, Jeo-young Shim
  • Publication number: 20060040369
    Abstract: Provided is a method of storing a substrate having an active group or a probe molecule immobilized thereon. The method includes attaching a UV film to a surface of the substrate having the active group or probe immobilized thereon; and exposing the UV film to UV light, wherein the UV film comprises a UV-permeable base film and a pressure sensitive adhesive layer formed on a surface of the UV-permeable base film to immobilize the substrate, and when the pressure sensitive adhesive layer is exposed to the UV light, its adhesive force decreases.
    Type: Application
    Filed: August 19, 2005
    Publication date: February 23, 2006
    Inventors: Ji-na Namgoong, Kyu-youn Hwang, Jeo-young Shim
  • Publication number: 20050282204
    Abstract: A microarray substrate having a patterned thin layer on a substrate is provided. In the microarray substrate, the substrate has a reflectance different from that of a material of the thin layer, and the patterned thin layer includes a spot region having a thickness at which constructive interference occurs between a first reflected light of irradiated excitation light reflected from the substrate and a second reflected light of irradiated excitation light reflected from the thin layer and a background region having a thickness at which destructive interference occurs between the first reflected light of irradiated excitation light reflected from the substrate and the second reflected light of irradiated excitation light reflected from the thin layer.
    Type: Application
    Filed: May 31, 2005
    Publication date: December 22, 2005
    Inventors: Jeo-young Shim, Ji-na Namgoong, Kyu-youn Hwang
  • Publication number: 20050272268
    Abstract: Provided are a method of producing a substrate having a patterned organosilane layer and a method of using the substrate having the patterned organosilane layer. The method of producing the substrate having the patterned organosilane layer, includes: coating organosilane on a substrate to obtain an organosilane layer; coating a photoresist material on the organosilane layer; exposing the photoresist material to light through a mask to obtain a patterned surface on the photoresist material; developing an exposed or unexposed region of the photoresist material using a developer; and wet etching a portion of the organosilane layer in the region from which the photoresist material has been removed, using a HF-containing solution as an etchant.
    Type: Application
    Filed: May 17, 2005
    Publication date: December 8, 2005
    Inventors: Kyu-youn Hwang, Ji-na Namgoong, Jeo-young Shim
  • Publication number: 20050112677
    Abstract: Provided are a substrate used in optically detecting a target material and having an oxide layer, a method for detecting a target material using the substrate, and an optical sensor including the substrate. The substrate can provide an increased detection signal in an analysis method using the substrate.
    Type: Application
    Filed: November 22, 2004
    Publication date: May 26, 2005
    Inventor: Jeo-young Shim
  • Publication number: 20030199577
    Abstract: The present invention relates to a substrate useful to bio-chips comprising a molecular layer having low surface density of amines, and it provides a compound of Chemical Formula (1) represented by N—CBZ-[1]amine-[9]acid having a carboxylic acid, a substrate comprising a surface having a molecular layer prepared by reacting amine groups of aminosilylated surface of the substrates with a compound of Chemical Formula (1) having a cone shape, and methods for preparing the same.
    Type: Application
    Filed: March 5, 2003
    Publication date: October 23, 2003
    Inventors: Joon-Won Park, Jeo-Young Shim, Joong-Ho Moon, Bong-Jin Hong
  • Publication number: 20030170672
    Abstract: A quality control method of a DNA microarray is provided which includes preparing a DNA spotting solution containing a first fluorescent dye having particular excitation and emission wavelengths, applying the DNA spotting solution to a substrate of a DNA chip to form DNA spots in which the first fluorescent dye is bound to the substrate, and detecting fluorescent signals from the DNA spots. In the DNA microarray quality control method, since a signal from a fluorescent dye covalently bound to the solid chip surface together with DNA probe is used for the quality control, staining and dye-removing processes, which were performed in conventional quality control methods, are unnecessary.
    Type: Application
    Filed: September 30, 2002
    Publication date: September 11, 2003
    Inventors: Jun-hyeong Cho, Nam Huh, Jeo-young Shim, Kyeong-hee Kim, Ga-young Park