Patents by Inventor Jeremy C. Danforth

Jeremy C. Danforth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11326556
    Abstract: A hybrid rocket motor includes a solid fuel element, and an oxidizer tank containing an oxidizer. The solid fuel element adjoins and at least partially defines a combustion chamber in which the solid fuel and the oxidizer are burned, to produce thrust from the hybrid rocket motor. The oxidizer tank is at least partially within the combustion chamber, and the entire oxidizer tank may be within the combustion chamber. The oxidizer tank may be protected by an insulating material, which may also serve as a structural material that contains the pressure of the oxidizer. The insulating material and the fuel material may both be polymer-based materials, although they may be different materials having different characteristics, for example including different additives to the same polymer material. The fuel element and the oxidizer tank may be made by additive manufacturing processes, for example by adding different materials in different locations.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: May 10, 2022
    Assignee: Raytheon Company
    Inventors: Matt H. Summers, Jeremy C. Danforth
  • Patent number: 11208362
    Abstract: A system is used for additively manufacturing propellant elements, such as for rocket motors, includes partially curing a propellant mixture before extruding or otherwise dispensing the material, such that the extruded propellant material is deposited on the element in a partially-cured state. The curing process for the partially-cured extruded material may be completed shortly after the material is put into place, for example by the material being heated at or above its cure temperature, such that it finishes curing before it fully cools. The propellant material may be prepared by first mixing together, a fuel, an oxidizer, and a binder, such as in an acoustic mixer. After that mixing a curative may be added to the mixture. The propellant mixture may then be directed to an extruder (or other dispenser), in which the mixture is heated to or above a cure temperature prior to the deposition, and then deposited.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: December 28, 2021
    Assignee: Raytheon Company
    Inventors: Matthew H. Summers, Jeremy C. Danforth, David G. Garrett, Mark T. Langhenry
  • Patent number: 11174048
    Abstract: A satellite has thrusters that are integral parts of its frame. The frame defines cavities therein where thrusters are located. The thrusters may include an electrically-operated propellant and electrodes to activate combustion in the electrically-operated propellant. The frame may be additively manufactured, and the propellant and/or the electrodes may also be additively manufactured, with the frame and the propellant and/or the electrodes also being manufactured in a single process. In addition the thrusters may have nozzle portions through which combustion gases exit the thrusters. The thrusters may be located at corners and/or along edges of the frame, and may be used to accomplish any of a variety of maneuvers for the satellite. The satellite may be a small satellite, such as a CubeSat satellite, for instance having a volume of about 1 liter, and a mass of no more than about 1.33 kg.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: November 16, 2021
    Assignee: Raytheon Company
    Inventors: Frederick B. Koehler, Jeremy C. Danforth, Ward D. Lyman, Mark T. Langhenry, Matt H. Summers, Paul E. Pontius, Brian M. Pape, Jared D. Stallings, James K. Villarreal, Thomas Villarreal
  • Publication number: 20210108598
    Abstract: A hybrid rocket motor includes a solid fuel element, and an oxidizer tank containing an oxidizer. The solid fuel element adjoins and at least partially defines a combustion chamber in which the solid fuel and the oxidizer are burned, to produce thrust from the hybrid rocket motor. The oxidizer tank is at least partially within the combustion chamber, and the entire oxidizer tank may be within the combustion chamber. The oxidizer tank may be protected by an insulating material, which may also serve as a structural material that contains the pressure of the oxidizer. The insulating material and the fuel material may both be polymer-based materials, although they may be different materials having different characteristics, for example including different additives to the same polymer material. The fuel element and the oxidizer tank may be made by additive manufacturing processes, for example by adding different materials in different locations.
    Type: Application
    Filed: September 29, 2020
    Publication date: April 15, 2021
    Inventors: Matt H. Summers, Jeremy C. Danforth
  • Patent number: 10823115
    Abstract: A hybrid rocket motor includes a solid fuel element, and an oxidizer tank containing an oxidizer. The solid fuel element adjoins and at least partially defines a combustion chamber in which the solid fuel and the oxidizer are burned, to produce thrust from the hybrid rocket motor. The oxidizer tank is at least partially within the combustion chamber, and the entire oxidizer tank may be within the combustion chamber. The oxidizer tank may be protected by an insulating material, which may also serve as a structural material that contains the pressure of the oxidizer. The insulating material and the fuel material may both be polymer-based materials, although they may be different materials having different characteristics, for example including different additives to the same polymer material. The fuel element and the oxidizer tank may be made by additive manufacturing processes, for example by adding different materials in different locations.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: November 3, 2020
    Assignee: Raytheon Company
    Inventors: Matt H. Summers, Jeremy C. Danforth
  • Patent number: 10808649
    Abstract: Microwave energy is used to ignite and control the ignition of electrically operated propellant to produce high-pressure gas. The propellant includes conductive particles that act as a free source of electrons. Incoming microwave energy accumulates electric charge in an attenuation zone, which is discharged in the form of dielectric breakdowns to create local randomly oriented currents. The propellant also includes polar molecules. The polar molecules in the attenuation zone absorb microwave energy causing the molecules to rapidly vibrate thereby increasing the temperature of the propellant. The increase in temperature and the local current densities together establish an ignition condition to ignite and sustain ignition of an ignition surface of the attenuation zone as the zone regresses without igniting the remaining bulk of the propellant.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: October 20, 2020
    Assignee: Raytheon Company
    Inventors: James K. Villarreal, Jeremy C. Danforth, Matt H. Summers, Daniel K. Johnson, Mark T. Langhenry
  • Patent number: 10662898
    Abstract: A thruster has an additively-manufactured housing that includes an integrally-formed nozzle with a burst disk in it. The housing is part of a casing that surrounds and encloses a propellant that is burned to produce pressurized gases that burst the burst disk and produce thrust. The thruster may be placed in a receptacle that defines a recess for receiving the thruster. The receptacle also may be additively manufactured. The thruster and the recess both may be cylindrical, with the housing being closely fit with the cylindrical walls of the receptacle. This may allow some of the structural loads on the housing, such as loads produced by the combustion of the propellant, to be transferred to the adjoining walls of the receptacle. This enables the housing to have less structural strength than if it were to have to contain the pressure from the propellant all on its own.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: May 26, 2020
    Assignee: Raytheon Company
    Inventors: Matthew H. Summers, Jeremy C. Danforth, David G. Garrett, Dmitry V. Knyazev, Stephen M. Baggs, Gaines S. Gibson
  • Patent number: 10654762
    Abstract: A combustible element includes regions of fuel material interspersed with regions of oxidizer material. The element may be made by additive manufacturing processes, such as three-dimensional printing, with the fuel material regions and the oxidizer material regions placed in appropriate locations in layer of the combustible element. For example, different extruders may be used to extrude and deposit portions of a fuel filament and an oxidizer filament at different locations in each layer of the combustible element. The combustible element may define a combustion chamber within the element, where combustion occurs when the combustible element is ignited. The fuel material and the oxidizer material may be selected, and their relative amounts may be controlled, such that desired relative amounts of fuel and oxidizer are present for combustion with desired characteristics, such as combustion rate.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: May 19, 2020
    Assignee: Raytheon Company
    Inventors: Jeremy C. Danforth, Mark T. Langhenry, Matt H. Summers, Teresa Perdue
  • Patent number: 10615547
    Abstract: An electrical device has device electrical contacts that are initially shunted together, to prevent accidental triggering or damage to the device, such as by electrostatic forces. The device is configured to be inserted into a receptacle, with parts of the receptacle disengaging the shunt and making electrical connection within the receptacle, such as with a shunt cutter. The receptacle may also include a pair of receptacle electrical contacts the electrically connect to the device electrical contacts. The configuration, where the shunt is only cut as part of the installation process, enables safer handling of initially-shunted devices, and can also facilitate making blind electrical connections. Making blind connection directly with parts of the receptacle also avoids the need to thread wires through the electrical receptacle and make electrical connections in another way.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: April 7, 2020
    Assignee: Raytheon Company
    Inventors: Matthew H. Summers, Jeremy C. Danforth, David G. Garrett, Dmitry V. Knyazev, Stephen M. Bagg, Gaines S. Gibson
  • Publication number: 20200024003
    Abstract: A satellite has thrusters that are integral parts of its frame. The frame defines cavities therein where thrusters are located. The thrusters may include an electrically-operated propellant and electrodes to activate combustion in the electrically-operated propellant. The frame may be additively manufactured, and the propellant and/or the electrodes may also be additively manufactured, with the frame and the propellant and/or the electrodes also being manufactured in a single process. In addition the thrusters may have nozzle portions through which combustion gases exit the thrusters. The thrusters may be located at corners and/or along edges of the frame, and may be used to accomplish any of a variety of maneuvers for the satellite. The satellite may be a small satellite, such as a CubeSat satellite, for instance having a volume of about 1 liter, and a mass of no more than about 1.33 kg.
    Type: Application
    Filed: February 4, 2019
    Publication date: January 23, 2020
    Inventors: Frederick B. Koehler, Jeremy C. Danforth, Ward D. Lyman, Mark T. Langhenry, Matt H. Summers, Paul E. Pontius, Brian M. Pape, Jared D. Stallings, James K. Villarreal, Thomas Villarreal
  • Publication number: 20200024210
    Abstract: A system is used for additively manufacturing propellant elements, such as for rocket motors, includes partially curing a propellant mixture before extruding or otherwise dispensing the material, such that the extruded propellant material is deposited on the element in a partially-cured state. The curing process for the partially-cured extruded material may be completed shortly after the material is put into place, for example by the material being heated at or above its cure temperature, such that it finishes curing before it fully cools. The propellant material may be prepared by first mixing together, a fuel, an oxidizer, and a binder, such as in an acoustic mixer. After that mixing a curative may be added to the mixture. The propellant mixture may then be directed to an extruder (or other dispenser), in which the mixture is heated to or above a cure temperature prior to the deposition, and then deposited.
    Type: Application
    Filed: December 20, 2018
    Publication date: January 23, 2020
    Inventors: Matthew H. Summers, Jeremy C. Danforth, David G. Garrett, Mark T. Langhenry
  • Patent number: 10518908
    Abstract: A spacecraft, such as a satellite, uses a shape memory polymer actuator to deploy one or more deployable parts. The shape memory polymer actuator may be formed integrally with a deployable part and/or with a fuselage or other structure of the spacecraft, with the shape memory polymer actuator being for example a relatively thin portion of the shape memory polymer material of the integral structure. The shape memory actuator allows deployment of the deployable part(s) upon heating of the shape memory polymer material of the actuator, such as after the satellite has been launched into space. The heating may be caused by a heat source that is part of the spacecraft itself, or may be merely the result of exposing the spacecraft to solar heating after launch. The deployable part of the spacecraft may include any of a wide variety of parts that are used after launch.
    Type: Grant
    Filed: October 23, 2015
    Date of Patent: December 31, 2019
    Assignee: Raytheon Company
    Inventors: Frederick B. Koehler, Ward D. Lyman, Matt H. Summers, Jeremy C. Danforth
  • Patent number: 10378483
    Abstract: A motor assembly is provided for use with projectiles, such as munitions, having relatively low length to diameter ratios. The motor assembly has an aerospike nozzle and a casing disposed about the aerospike nozzle, where interior aerospike volume contains propellant and where walls of both the cowl of the casing and of the aerospike nozzle jointly define a combustion chamber.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: August 13, 2019
    Assignee: Raytheon Company
    Inventors: James Kendall Villarreal, Mark T. Langhenry, Jeremy C. Danforth
  • Patent number: 10287218
    Abstract: A method of additively manufacturing propellant elements, such as for rocket motors, includes partially curing a propellant mixture before extruding or otherwise dispensing the material, such that the extruded propellant material is deposited on the element in a partially-cured state. The curing process for the partially-cured extruded material may be completed shortly after the material is put into place, for example by the material being heated at or above its cure temperature, such that it finishes curing before it fully cools. The propellant material may be prepared by first mixing together, a fuel, an oxidizer, and a binder, such as in an acoustic mixer. After that mixing a curative may be added to the mixture. The propellant mixture may then be directed to an extruder (or other dispenser), in which the mixture is heated to or above a cure temperature prior to the deposition, and then deposited.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: May 14, 2019
    Assignee: Raytheon Company
    Inventors: Matthew H. Summers, Jeremy C. Danforth, David G. Garrett, Mark T. Langhenry
  • Patent number: 10259756
    Abstract: A device may include an electrically-operated propellant or energetic gas-generating material, additively manufactured together with electrodes for producing a reaction in the material. The device may also include a casing that is additively manufactured with the other components. The additive manufacturing may be accomplished by extruding or otherwise depositing raw materials for the different components where desired. The electrodes may be made of a conductive polymer material, for example using an electrically-conductive fill in a polymer.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: April 16, 2019
    Assignee: Raytheon Company
    Inventors: Jeremy C. Danforth, Matt H. Summers, David G. Garrett
  • Patent number: 10247530
    Abstract: A projectile, such as a railgun-launched projectile, includes a single-piece body that is additively manufactured. The single piece body includes fuel within it, and one or more cavities for receiving an oxidizer. The body also defines one or more combustion chambers therein for combustion of the fuel and oxidizer as part of a divert thruster system. Thus the projectile is able to fully contain the divert thruster system within the single-piece body without using any hot gas seals as part of the system. The body may also define a cavity for receiving a pressurized fluid, used as part of a cold-gas attitude control system of the projectile. The body may also define passages between the pressurized fluid cavity and other parts of the attitude control system, such as valves and/or nozzles that are outside of the body, for example being aft of the one-piece body.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: April 2, 2019
    Assignee: Raytheon Company
    Inventors: Jeremy C. Danforth, Matthew H. Summers, David G. Garrett, Stephen M. Bagg
  • Patent number: 10220966
    Abstract: A satellite has thrusters that are integral parts of its frame. The frame defines cavities therein where thrusters are located. The thrusters may include an electrically-operated propellant and electrodes to activate combustion in the electrically-operated propellant. The frame may be additively manufactured, and the propellant and/or the electrodes may also be additively manufactured, with the frame and the propellant and/or the electrodes also being manufactured in a single process. In addition the thrusters may have nozzle portions through which combustion gases exit the thrusters. The thrusters may be located at corners and/or along edges of the frame, and may be used to accomplish any of a variety of maneuvers for the satellite. The satellite may be a small satellite, such as a CubeSat satellite, for instance having a volume of about 1 liter, and a mass of no more than about 1.33 kg.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: March 5, 2019
    Assignee: Raytheon Company
    Inventors: Frederick B. Koehler, Jeremy C. Danforth, Ward D. Lyman, Mark T. Langhenry, Matt H. Summers, Paul E. Pontius, Brian M. Pape, Jared D. Stallings, James K. Villarreal, Thomas Villarreal
  • Patent number: 10184762
    Abstract: A device is provided. The device includes at least one SMM component fabricated from an SMM. The SMM component is configured to change shape in response to receiving a stimulus. The SMM component is also configured to deploy from a device body of the device allowing the device to change shape in an advantageous way. A method implemented by a device is also provided. The method includes changing a shape of an SMM component of the device in response to receiving a stimulus. The SMM component is fabricated from an SMM. The method also includes deploying the SMM component from a device body of the device allowing the device to change shape in an advantageous way.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: January 22, 2019
    Assignee: Raytheon Company
    Inventors: Matthew H. Summers, Frederick B. Koehler, Jeremy C. Danforth, James K. Villarreal
  • Publication number: 20190002362
    Abstract: A combustible element includes regions of fuel material interspersed with regions of oxidizer material. The element may be made by additive manufacturing processes, such as three-dimensional printing, with the fuel material regions and the oxidizer material regions placed in appropriate locations in layer of the combustible element. For example, different extruders may be used to extrude and deposit portions of a fuel filament and an oxidizer filament at different locations in each layer of the combustible element. The combustible element may define a combustion chamber within the element, where combustion occurs when the combustible element is ignited. The fuel material and the oxidizer material may be selected, and their relative amounts may be controlled, such that desired relative amounts of fuel and oxidizer are present for combustion with desired characteristics, such as combustion rate.
    Type: Application
    Filed: September 10, 2018
    Publication date: January 3, 2019
    Inventors: Jeremy C. Danforth, Mark T. Langhenry, Matt H. Summers, Teresa Perdue
  • Patent number: 10145337
    Abstract: Electrical ignition of electrically operated propellant in a gas generation system provides an ignition condition at an ignition surface between a pair of electrodes that satisfies three criteria of a current density J that exhibits a decreasing gradient along an axis normal to an ignition surface, is substantially constant across the ignition surface and exceeds an ignition threshold at the ignition surface. These criteria may be satisfied by one or more of an angled electrode configuration, a segmented electrode configuration or an additive to the electrically operated propellant that modifies its conductivity. These configurations improve burn rate control and consumption of the available propellant and are scalable to greater propellant mass to support larger gas generation systems.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: December 4, 2018
    Assignee: Raytheon Company
    Inventors: Matt H. Summers, James K. Villarreal, Mark T. Langhenry, Jeremy C. Danforth, John W. Walter