Patents by Inventor Jeremy Cheng

Jeremy Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150337432
    Abstract: Provided is High Productivity Combinatorial (HPC) testing methodology of semiconductor substrates, each including multiple site isolated regions. The site isolated regions are used for testing different compositions and/or structures of barrier layers disposed over silver reflectors. The tested barrier layers may include all or at least two of nickel, chromium, titanium, and aluminum. In some embodiments, the barrier layers include oxygen. This combination allows using relative thin barrier layers (e.g., 5-30 Angstroms thick) that have high transparency yet provide sufficient protection to the silver reflector. The amount of nickel in a barrier layer may be 5-10% by weight, chromium—25-30%, titanium and aluminum—30%-35% each. The barrier layer may be co-sputtered in a reactive or inert-environment using one or more targets that include all four metals. An article may include multiple silver reflectors, each having its own barrier layer.
    Type: Application
    Filed: August 3, 2015
    Publication date: November 26, 2015
    Inventors: Guizhen Zhang, Jeremy Cheng, Guowen Ding, Minh Huu Le, Daniel Schweigert, Yu Wang
  • Patent number: 9175389
    Abstract: Systems and apparatus are described that facilitate the evaluation and characterization of ALD processes as a function of process parameters such as temperature, gas flow rate, and pressure. In some embodiments, systems and apparatus are described that allow the ALD process to be characterized at different pressures in a combinatorial manner.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: November 3, 2015
    Assignee: Intermolecular, Inc.
    Inventor: Jeremy Cheng
  • Patent number: 9127348
    Abstract: Provided is High Productivity Combinatorial (HPC) testing methodology of semiconductor substrates, each including multiple site isolated regions. The site isolated regions are used for testing different compositions and/or structures of barrier layers disposed over silver reflectors. The tested barrier layers may include all or at least two of nickel, chromium, titanium, and aluminum. In some embodiments, the barrier layers include oxygen. This combination allows using relative thin barrier layers (e.g., 5-30 Angstroms thick) that have high transparency yet provide sufficient protection to the silver reflector. The amount of nickel in a barrier layer may be 5-10% by weight, chromium—25-30%, titanium and aluminum—30%-35% each. The barrier layer may be co-sputtered in a reactive or inert-environment using one or more targets that include all four metals. An article may include multiple silver reflectors, each having its own barrier layer.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: September 8, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Guizhen Zhang, Jeremy Cheng, Guowen Ding, Minh Huu Le, Daniel Schweigert, Yu Wang
  • Publication number: 20150191815
    Abstract: A method for making low emissivity panels, including control the composition of a barrier layer formed on a thin conductive silver layer. The barrier structure can include a ternary alloy of nickel, titanium, and niobium, which showed improvements in overall performance than those from binary barrier results. The percentage of nickel can be between 5 and 15 wt %. The percentage of titanium can be between 30 and 50 wt %. The percentage of niobium can be between 40 and 60 wt %.
    Type: Application
    Filed: March 18, 2015
    Publication date: July 9, 2015
    Inventors: Guowen Ding, Brent Boyce, Jeremy Cheng, Muhammad Imran, Jingyu Lao, Minh Huu Le, Daniel Schweigert, Zhi-Wen Wen Sun, Yu Wang, Yongli Xu, Guizhen Zhang
  • Publication number: 20150104569
    Abstract: Provided is High Productivity Combinatorial (HPC) testing methodology of semiconductor substrates, each including multiple site isolated regions. The site isolated regions are used for testing different compositions and/or structures of barrier layers disposed over silver reflectors. The tested barrier layers may include all or at least two of nickel, chromium, titanium, and aluminum. In some embodiments, the barrier layers include oxygen. This combination allows using relative thin barrier layers (e.g., 5-30 Angstroms thick) that have high transparency yet provide sufficient protection to the silver reflector. The amount of nickel in a barrier layer may be 5-10% by weight, chromium—25-30%, titanium and aluminum—30%-35% each. The barrier layer may be co-sputtered in a reactive or inert-environment using one or more targets that include all four metals. An article may include multiple silver reflectors, each having its own barrier layer.
    Type: Application
    Filed: December 18, 2014
    Publication date: April 16, 2015
    Inventors: Guizhen Zhang, Jeremy Cheng, Guowen Ding, Minh Huu Le, Daniel Schweigert, Yu Wang
  • Publication number: 20150093898
    Abstract: A combinatorial processing chamber is provided. The combinatorial processing chamber is configured to isolate a radial portion of a rotatable substrate support, which in turn is configured to support a substrate. The chamber includes a plurality of clusters process heads in one embodiment. An insert having a base plate disposed between the substrate support and the process heads defines a confinement region for a deposition process in one embodiment. The base plate has an opening to enable access of the deposition material to the substrate. Through rotation of the substrate and movement of the opening, multiple regions of the substrate are accessible for performing combinatorial processing on a single substrate.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 2, 2015
    Inventors: Rick Endo, Jeremy Cheng, Indranil De, James Tsung, Kurt Weiner, Maosheng Zhao
  • Publication number: 20150025670
    Abstract: Substrate processing including correction for deposition location is described, including a combinatorial processing chamber that incorporates the correction. The combinatorial processing chamber can be used to process multiple regions of a substrate using different processing parameters on different regions. For example, one region can have one material deposited on it and another region can have a different material deposited on it, although other combinations and variations are possible. The combinatorial processing chamber uses a rotating and revolving substrate pedestal to be able to deposit on all locations or positions on a substrate. The combinatorial processing chamber uses a correction factor that accounts for variations in alignment and/or configuration of the processing chamber so that the actual location of deposition of a region is approximately the same as a desired location of deposition.
    Type: Application
    Filed: October 2, 2014
    Publication date: January 22, 2015
    Inventors: Jeremy Cheng, Indranil De, Ho Yin Owen Fong, Zhendong Hong, Dan Wang
  • Patent number: 8932995
    Abstract: A combinatorial processing chamber is provided. The combinatorial processing chamber is configured to isolate a radial portion of a rotatable substrate support, which in turn is configured to support a substrate. The chamber includes a plurality of clusters process heads in one embodiment. An insert having a base plate disposed between the substrate support and the process heads defines a confinement region for a deposition process in one embodiment. The base plate has an opening to enable access of the deposition material to the substrate. Through rotation of the substrate and movement of the opening, multiple regions of the substrate are accessible for performing combinatorial processing on a single substrate.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: January 13, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Rick Endo, Kurt Weiner, Indranil De, James Tsung, Maosheng Zhao, Jeremy Cheng
  • Patent number: 8882917
    Abstract: Substrate processing including correction for deposition location is described, including a combinatorial processing chamber that incorporates the correction. The combinatorial processing chamber can be used to process multiple regions of a substrate using different processing parameters on different regions. For example, one region can have one material deposited on it and another region can have a different material deposited on it, although other combinations and variations are possible. The combinatorial processing chamber uses a rotating and revolving substrate pedestal to be able to deposit on all locations or positions on a substrate. The combinatorial processing chamber uses a correction factor that accounts for variations in alignment and/or configuration of the processing chamber so that the actual location of deposition of a region is approximately the same as a desired location of deposition.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: November 11, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Jeremy Cheng, Ho Yin Owen Fong, Dan Wang, Zhendong Hong, Indranil De
  • Publication number: 20140322507
    Abstract: Disclosed herein are systems, methods, and apparatus for forming low emissivity panels. In some embodiments, a partially fabricated panel may be provided that includes a substrate, a reflective layer formed over the substrate, and a barrier layer formed over the reflective layer such that the reflective layer is formed between the substrate and the barrier layer. The barrier layer may include a partially oxidized alloy of three or more metals. A first interface layer may be formed over the barrier layer. A top dielectric layer may be formed over the first interface layer. The top dielectric layer may be formed using reactive sputtering in an oxygen containing environment. The first interface layer may prevent further oxidation of the partially oxidized alloy of the three or more metals when forming the top dielectric layer. A second interface layer may be formed over the top dielectric layer.
    Type: Application
    Filed: December 31, 2013
    Publication date: October 30, 2014
    Applicant: Intermolecular Inc.
    Inventors: Guowen Ding, Jeremy Cheng, Muhammad Imran, Minh Huu Le, Daniel Schweigert, Yongli Xu, Guizhen Zhang
  • Publication number: 20140308528
    Abstract: Disclosed herein are systems, methods, and apparatus for forming a low emissivity panel. In various embodiments, a partially fabricated panel may be provided. The partially fabricated panel may include a substrate, a reflective layer formed over the substrate, and a top dielectric layer formed over the reflective layer such that the reflective layer is formed between the substrate and the top dielectric layer. The top dielectric layer may include tin having an oxidation state of +4. An interface layer may be formed over the top dielectric layer. A top diffusion layer may be formed over the interface layer. The top diffusion layer may be formed in a nitrogen plasma environment. The interface layer may substantially prevent nitrogen from the nitrogen plasma environment from reaching the top dielectric layer and changing the oxidation state of tin included in the top dielectric layer.
    Type: Application
    Filed: December 31, 2013
    Publication date: October 16, 2014
    Applicant: Intermolecular Inc.
    Inventors: Guowen Ding, Brent Boyce, Jeremy Cheng, Jose Ferreira, Muhammad Imran, Minh Huu Le, Daniel Schweigert, Yu Wang, Yongli Xu, Guizhen Zhang
  • Publication number: 20140272354
    Abstract: Low emissivity panels can include a separation layer of Zn2SnOx between multiple infrared reflective stacks. The low emissivity panels can also include NiNbTiOx as barrier layer. The low emissivity panels have high light to solar gain, color neutral, together with similar observable color before and after a heat treatment process.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Guowen Ding, Jeremy Cheng, Tong Ju, Minh Huu Le, Phil Lingle, Daniel Schweigert, Zhi-Wen Wen Sun, Guizhen Zhang
  • Publication number: 20140268316
    Abstract: Disclosed herein are systems, methods, and apparatus for forming low emissivity panels that may include a substrate and a reflective layer formed over the substrate. The low emissivity panels may further include a top dielectric layer formed over the reflective layer such that the reflective layer is formed between the top dielectric layer and the substrate. The top dielectric layer may include a ternary metal oxide, such as zinc tin aluminum oxide. The top dielectric layer may also include aluminum. The concentration of aluminum may be between about 1 atomic % and 15 atomic % or between about 2 atomic % and 10 atomic %. An atomic ratio of zinc to tin in the top dielectric layer may be between about 0.67 and about 1.5 or between about 0.9 and about 1.1.
    Type: Application
    Filed: December 23, 2013
    Publication date: September 18, 2014
    Applicant: Intermolecular Inc.
    Inventors: Guizhen Zhang, Brent Boyce, Jeremy Cheng, Guowen Ding, Muhammad Imran, Minh Huu Le, Daniel Schweigert, Yongli Xu
  • Publication number: 20140272454
    Abstract: Provided is High Productivity Combinatorial (HPC) testing methodology of semiconductor substrates, each including multiple site isolated regions. The site isolated regions are used for testing different compositions and/or structures of barrier layers disposed over silver reflectors. The tested barrier layers may include all or at least two of nickel, chromium, titanium, and aluminum. In some embodiments, the barrier layers include oxygen. This combination allows using relative thin barrier layers (e.g., 5-30 Angstroms thick) that have high transparency yet provide sufficient protection to the silver reflector. The amount of nickel in a barrier layer may be 5-10% by weight, chromium—25-30%, titanium and aluminum—30%-35% each. The barrier layer may be co-sputtered in a reactive or inert-environment using one or more targets that include all four metals. An article may include multiple silver reflectors, each having its own barrier layer.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Guizhen Zhang, Jeremy Cheng, Guowen Ding, Minh Huu Le, Daniel Schweigert, Yu Wang
  • Publication number: 20140272395
    Abstract: Disclosed herein are systems, methods, and apparatus for forming low emissivity panels that may include a first reflective layer, a second reflective layer, and a spacer layer disposed between the first reflective layer and the second reflective layer. In some embodiments, the spacer layer may have a thickness of between about 20 nm and 90 nm. The spacer layer may include a bi-metal oxide that may include tin, and may further include one of zinc, aluminum, or magnesium. The spacer layer may have a substantially amorphous structure. Moreover, the spacer layer may have a substantially uniform composition throughout the thickness of the spacer layer. The low emissivity panel may be configured to have a color change as determined by Rg ?E (i.e. as determined on the glass side) that is less than about 1.7 in response to an application of a heat treatment to the low emissivity panel.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 18, 2014
    Applicant: Intermolecular Inc.
    Inventors: Guowen Ding, Jeremy Cheng, Tong Ju, Minh Huu Le, Daniel Schweigert, Zhi-Wen Wen Sun, Yongli Xu, Guizhen Zhang
  • Publication number: 20140272353
    Abstract: Low emissivity panels can include a protection layer of silicon nitride on a layer of ZnO on a layer of Zn2SnOx. The low emissivity panels can also include NiNbTiOx as a barrier layer. The low emissivity panels have high light to solar gain, color neutral, together with similar observable color and light transmission before and after a heat treatment process.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Guowen Ding, Jeremy Cheng, Tong Ju, Minh Huu Le, Daniel Schweigert, Guizhen Zhang
  • Publication number: 20140268317
    Abstract: Embodiments provided herein describe low-e panels and methods for forming low-e panels. A transparent substrate is provided. A reflective layer is formed above the transparent substrate. An over-coating layer is formed above the reflective layer. The over-coating layer includes first, second, and third sub-layers.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Guowen Ding, Jeremy Cheng, Minh Huu Le, Daniel Schweigert, Zhi-Wen Wen Sun, Guizhen Zhang
  • Publication number: 20140272455
    Abstract: A method for making low emissivity panels, including control the composition of a barrier layer formed on a thin conductive silver layer. The barrier structure can include a ternary alloy of titanium, nickel and niobium, which showed improvements in overall performance than those from binary barrier results. The percentage of titanium can be between 5 and 15 wt %. The percentage of nickel can be between 30 and 50 wt %. The percentage of niobium can be between 40 and 60 wt %.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Guowen Ding, Brent Boyce, Jeremy Cheng, Muhammad Imran, Jingyu Lao, Minh Huu Le, Daniel Schweigert, Zhi-Wen Wen Sun, Yu Wang, Yongli Xu, Guizhen Zhang
  • Patent number: 8771483
    Abstract: A combinatorial processing chamber is provided. The combinatorial processing chamber is configured to isolate a radial portion of a rotatable substrate support, which in turn is configured to support a substrate. The chamber includes a plurality of clusters process heads in one embodiment. An insert having a base plate disposed between the substrate support and the process heads defines a confinement region for a deposition process in one embodiment. The base plate has an opening to enable access of the deposition material to the substrate. Through rotation of the substrate and movement of the opening, multiple regions of the substrate are accessible for performing combinatorial processing on a single substrate.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: July 8, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Rick Endo, Kurt Weiner, Indranil De, James Tsung, Maosheng Zhao, Jeremy Cheng
  • Publication number: 20140174540
    Abstract: Systems and apparatus are described that facilitate the evaluation and characterization of ALD processes as a function of process parameters such as temperature, gas flow rate, and pressure. In some embodiments, systems and apparatus are described that allow the ALD process to be characterized at different pressures in a combinatorial manner.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: INTERMOLECULAR, INC.
    Inventor: Jeremy Cheng