Patents by Inventor Jerzy Olejnik

Jerzy Olejnik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11035823
    Abstract: The invention provides methods and compositions, including, without limitation, algorithms, computer readable media, computer programs, apparatus, and systems for determining the identity of nucleic acids in nucleotide sequences using, for example, data obtained from sequencing by synthesis methods. A plurality of smaller flow cells is employed, each with a relatively small area to be imaged, in order to provide greater flexibility and efficiency.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: June 15, 2021
    Assignee: Qiagen Sciences, LLC
    Inventors: Steven Gordon, Thomas Hagerott, Edmund Golaski, Jerzy Olejnik
  • Patent number: 11001887
    Abstract: The invention provides methods and compositions, including, without limitation, algorithms, computer readable media, computer programs, apparatus, and systems for determining the identity of nucleic acids in nucleotide sequences using, for example, data obtained from sequencing by synthesis methods. The methods of the invention include correcting one or more phenomena that are encountered during nucleotide sequencing, such as using sequencing by synthesis methods. These phenomena include, without limitation, sequence lead, sequence lag, spectral crosstalk, and noise resulting from variations in illumination and/or filter responses.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: May 11, 2021
    Assignee: QIAGEN SCIENCES, LLC
    Inventors: Steven Gordon, Jerzy Olejnik
  • Patent number: 10961574
    Abstract: The invention provides methods and compositions, including, without limitation, algorithms, computer readable media, computer programs, apparatus, and systems for determining the identity of nucleic acids in nucleotide sequences using, for example, data obtained from sequencing by synthesis methods. The methods of the invention include correcting one or more phenomena that are encountered during nucleotide sequencing, such as using sequencing by synthesis methods. These phenomena include, without limitation, sequence lead, sequence lag, spectral crosstalk, and noise resulting from variations in illumination and/or filter responses.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: March 30, 2021
    Assignee: QIAGEN SCIENCES, LLC
    Inventors: Steven Gordon, Jerzy Olejnik
  • Publication number: 20200277653
    Abstract: Methods and compositions for enriching a population of particles containing an analyte are disclosed. In one embodiment, enrichment beads are used that are larger in size than the beads used for amplification. A separation device is employed that can retain larger beads with bound amplified beads. The technique finds many uses, including enriching for beads with clonally amplified template, which can be used in a variety of assays, including nucleic acid sequencing.
    Type: Application
    Filed: March 5, 2020
    Publication date: September 3, 2020
    Inventors: Jerzy Olejnik, Steven Gordon, Martina Werner
  • Publication number: 20200248251
    Abstract: Modular flow cells, devices with modular flow cells, and methods of sequencing using modular flow cells, as well as systems and kits including modular flow cells, are described, permitting sequencing wherein less than the full capacity for sequencing is desired.
    Type: Application
    Filed: April 23, 2020
    Publication date: August 6, 2020
    Inventors: Jerzy Olejnik, Dirk Zimmermann
  • Patent number: 10655171
    Abstract: Modular flow cells, devices with modular flow cells, and methods of sequencing using modular flow cells, as well as systems and kits including modular flow cells, are described, permitting sequencing wherein less than the full capacity for sequencing is desired.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: May 19, 2020
    Assignees: QIAGEN SCIENCES, LLC, QIAGEN GmbH
    Inventors: Jerzy Olejnik, Dirk Zimmermann
  • Patent number: 10626446
    Abstract: Methods and compositions for enriching a population of particles containing an analyte are disclosed. In one embodiment, enrichment beads are used that are larger in size than the beads used for amplification. A separation device is employed that can retain larger beads with bound amplified beads. The technique finds many uses, including enriching for beads with clonally amplified template, which can be used in a variety of assays, including nucleic acid sequencing.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: April 21, 2020
    Assignee: QIAGEN SCIENCES, LLC
    Inventors: Jerzy Olejnik, Steven Gordon, Martina Werner
  • Publication number: 20200071755
    Abstract: The invention provides methods and compositions, including, without limitation, algorithms, computer readable media, computer programs, apparatus, and systems for determining the identity of nucleic acids in nucleotide sequences using, for example, data obtained from sequencing by synthesis methods. The methods of the invention include correcting one or more phenomena that are encountered during nucleotide sequencing, such as using sequencing by synthesis methods. These phenomena include, without limitation, sequence lead, sequence lag, spectral crosstalk, and noise resulting from variations in illumination and/or filter responses.
    Type: Application
    Filed: November 5, 2019
    Publication date: March 5, 2020
    Inventors: Steven Gordon, Jerzy Olejnik
  • Publication number: 20200040391
    Abstract: The invention provides methods and compositions, including, without limitation, algorithms, computer readable media, computer programs, apparatus, and systems for determining the identity of nucleic acids in nucleotide sequences using, for example, data obtained from sequencing by synthesis methods. The methods of the invention include correcting one or more phenomena that are encountered during nucleotide sequencing, such as using sequencing by synthesis methods. These phenomena include, without limitation, sequence lead, sequence lag, spectral crosstalk, and noise resulting from variations in illumination and/or filter responses.
    Type: Application
    Filed: June 3, 2019
    Publication date: February 6, 2020
    Inventors: Steven Gordon, Jerzy Olejnik
  • Publication number: 20200002689
    Abstract: The present invention relates to a polymerase enzyme from 9°N with improved ability to incorporate reversibly terminating nucleotides. The enzyme comprising mutations in the motif A region. The invention also relates to methods of using such enzymes as well as a kit with such polymerases.
    Type: Application
    Filed: February 13, 2018
    Publication date: January 2, 2020
    Inventors: Jerzy Olejnik, Angela Delucia
  • Publication number: 20190375777
    Abstract: The present invention provides methods, compositions, mixtures and kits utilizing deoxynucleoside triphosphates comprising a 3?-O position capped by a group comprising methylenedisulfide as a cleavable protecting group and a detectable label reversibly connected to the nucleobase of said deoxynucleoside. Such compounds provide new possibilities for future sequencing technologies, including but not limited to Sequencing by Synthesis.
    Type: Application
    Filed: May 28, 2019
    Publication date: December 12, 2019
    Inventors: Mong Sano Marma, Jerzy Olejnik, Ilia Korboukh
  • Patent number: 10472382
    Abstract: The invention provides methods and compositions, including, without limitation, algorithms, computer readable Media, computer programs, apparatus, and systems for determining the identity of nucleic acids in nucleotide sequences using, for example, data obtained from sequencing by synthesis methods. The methods of the invention include correcting one or more phenomena that are encountered during nucleotide sequencing, such as using sequencing by synthesis methods. These phenomena include, without limitation, sequence lead, sequence lag, spectral crosstalk, and noise resulting from variations in illumination and/or filter responses.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: November 12, 2019
    Assignee: QIAGEN SCIENCES, LLC
    Inventors: Steven Gordon, Jerzy Olejnik
  • Publication number: 20190330690
    Abstract: The invention relates to methods, compositions, devices, systems and kits as described including, without limitation, reagents and mixtures for determining the identity of nucleic acids in nucleotide sequences using, for example, sequencing by synthesis methods. In particular, the present invention contemplates the use of polyphenolic compounds, known as antioxidant additives, to improve the efficiency of Sequencing-By-Synthesis reactions. For example, gallic acid (GA) is shown herein to be one of many exemplary SBS polyphenolic additives.
    Type: Application
    Filed: May 24, 2019
    Publication date: October 31, 2019
    Inventors: Jerzy Olejnik, Michel Georges Perbost
  • Publication number: 20190292582
    Abstract: Methods and compositions for enriching a population of particles containing an analyte are disclosed. In one embodiment, enrichment beads are used that are larger in size than the beads used for amplification. A separation device is employed that can retain larger beads with bound amplified beads. The technique finds many uses, including enriching for beads with clonally amplified template, which can be used in a variety of assays, including nucleic acid sequencing.
    Type: Application
    Filed: November 1, 2018
    Publication date: September 26, 2019
    Inventors: Jerzy Olejnik, Steven Gordon, Martina Werner
  • Publication number: 20190285581
    Abstract: The invention provides methods and compositions, including, without limitation, algorithms, computer readable media, computer programs, apparatus, and systems for determining the identity of nucleic acids in nucleotide sequences using, for example, data obtained from sequencing by synthesis methods. A plurality of smaller flow cells is employed, each with a relatively small area to be imaged, in order to provide greater flexibility and efficiency.
    Type: Application
    Filed: March 5, 2019
    Publication date: September 19, 2019
    Inventors: Steven Gordon, Thomas Hagerott, Edmund Golaski, Jerzy Olejnik
  • Patent number: 10337050
    Abstract: The invention relates to methods, compositions, devices, systems and kits as described including, without limitation, reagents and mixtures for determining the identity of nucleic acids in nucleotide sequences using, for example, sequencing by synthesis methods. In particular, the present invention contemplates the use of polyphenolic compounds, known as antioxidant additives, to improve the efficiency of Sequencing-By-Synthesis reactions. For example, gallic acid (GA) is shown herein to be one of many exemplary SBS polyphenolic additives.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: July 2, 2019
    Assignee: Qiagen Sciences, LLC
    Inventors: Jerzy Olejnik, Michel Georges Perbost
  • Patent number: 10336785
    Abstract: The present invention provides methods, compositions, mixtures and kits utilizing deoxynucleoside triphosphates comprising a 3?-O position capped by a group comprising methylenedisulfide as a cleavable protecting group and a detectable label reversibly connected to the nucleobase of said deoxynucleoside. Such compounds provide new possibilities for future sequencing technologies, including but not limited to Sequencing by Synthesis.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: July 2, 2019
    Assignee: Qiagen Sciences, LLC
    Inventors: Mong Sano Marma, Jerzy Olejnik, Ilia Korboukh
  • Patent number: 10329611
    Abstract: The invention provides methods and compositions, including, without limitation, algorithms, computer readable media, computer programs, apparatus, and systems for determining the identity of nucleic acids in nucleotide sequences using, for example, data obtained from sequencing by synthesis methods. The methods of the invention include correcting one or more phenomena that are encountered during nucleotide sequencing, such as using sequencing by synthesis methods. These phenomena include, without limitation, sequence lead, sequence lag, spectral crosstalk, and noise resulting from variations in illumination and/or filter responses.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: June 25, 2019
    Assignee: Intelligent Bio-Systems, Inc.
    Inventors: Steven Gordon, Jerzy Olejnik
  • Patent number: 10301346
    Abstract: The present invention provides methods, compositions, mixtures and kits utilizing deoxynucleoside triphosphates comprising a 3?-O position capped by a group comprising methylenedisulfide as a cleavable protecting group and a detectable label reversibly connected to the nucleobase of said deoxynucleoside. Such compounds provide new possibilities for future sequencing technologies, including but not limited to Sequencing by Synthesis.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: May 28, 2019
    Assignee: Qiagen Sciences, LLC
    Inventors: Mong Sano Marma, Jerzy Olejnik, Ilia Korboukh
  • Patent number: 10273539
    Abstract: The present invention provides methods, compositions, mixtures and kits utilizing deoxynucleoside triphosphates comprising a 3?-O position capped by a group comprising methylenedisulfide as a cleavable protecting group and a detectable label reversibly connected to the nucleobase of said deoxynucleoside. Such compounds provide new possibilities for future sequencing technologies, including but not limited to Sequencing by Synthesis.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: April 30, 2019
    Assignee: QIAGEN SCIENCES, LLC
    Inventors: Mong Sano Marma, Jerzy Olejnik