Patents by Inventor Jesse A. Frantz

Jesse A. Frantz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220290660
    Abstract: Systems and methods are provided for a mechanical actuator based on a fiber optic platform. A material that is configured to be activated by light may be incorporated into an optical fiber that serves as both an actuator and a power delivery network. This platform is adaptable to different materials, types of motions, and length scales and allows for precise delivery of photons to the material.
    Type: Application
    Filed: March 8, 2022
    Publication date: September 15, 2022
    Inventors: Jason D. Myers, Jesse A. Frantz, Jasbinder S. Sanghera, Daniel Rhonehouse, Christopher Bardeen, Colin Baker, Geoffrey Chin, Peter Alexander Morrison
  • Publication number: 20220190173
    Abstract: A composition of matter having a coated silicon substrate with multiple alternating layers of polydopamine and polyallylamine bound copper-indium-gallium oxide (CIGO) nanoparticles on the substrate. A related composition of matter having polyallylamine bound to CIGO nanoparticles to form PAH-coated CIGO nanoparticles. A related CIGO thin film made via conversion of layer-by-layer assembled CIGO nanoparticles and polyelectrolytes. CIGO nanoparticles are created via a flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH), and dispersed in aqueous solution. Multilayer films are assembled by alternately dipping a substrate into a solution of either polydopamine or polystyrenesulfonate and then in the CIGO-PAH dispersion to fabricate CIGO films as thick as 1-2 microns.
    Type: Application
    Filed: March 7, 2022
    Publication date: June 16, 2022
    Inventors: Walter J. Dressick, Jasbinder S. Sanghera, Woohong Kim, Colin C. Baker, Jason D. Myers, Jesse A. Frantz
  • Patent number: 11294253
    Abstract: A graphene and liquid crystal device comprising a substrate, a layer of graphene on the substrate, and a layer of liquid crystal on the layer of graphene. A graphene and liquid crystal device wherein the layer of graphene is an alignment layer and an electrode for a liquid crystal device.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: April 5, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Rajratan Basu, Daniel Kinnamon, Christopher M. Spillmann, Jakub Kolacz, Jesse A. Frantz, Jason D. Myers
  • Publication number: 20220100009
    Abstract: Tunable devices and methods for fine tuning the optical responses of thin film devices post fabrication are described. This approach modifies the refractive indices of the chalcogenide glass thin films incorporated into the devices, and using this change in the refractive indices to fine tune the optical responses of the devices. Thermal annealing may be used to modify the refractive index. Thermal annealing provides good uniformity in large-area devices and may be applied to multi-layer structures.
    Type: Application
    Filed: September 29, 2021
    Publication date: March 31, 2022
    Inventors: Jesse Frantz, Jason Myers, Vinh Q. Nguyen, Jasbinder Sanghera, Robel Bekele, Anthony Romano Clabeau
  • Patent number: 11271124
    Abstract: A composition of matter having a coated silicon substrate with multiple alternating layers of polydopamine and polyallylamine bound copper-indium-gallium oxide (CIGO) nanoparticles on the substrate. A related composition of matter having polyallylamine bound to CIGO nanoparticles to form PAH-coated CIGO nanoparticles. A related CIGO thin film made via conversion of layer-by-layer assembled CIGO nanoparticles and polyelectrolytes. CIGO nanoparticles are created via a flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH), and dispersed in aqueous solution. Multilayer films are assembled by alternately dipping a substrate into a solution of either polydopamine or polystyrenesulfonate and then in the CIGO-PAH dispersion to fabricate CIGO films as thick as 1-2 microns.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: March 8, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Walter J. Dressick, Jasbinder S. Sanghera, Woohong Kim, Colin C. Baker, Jason D. Myers, Jesse A. Frantz
  • Patent number: 11231525
    Abstract: The invention relates to methods for fabricating antireflective surface structures (ARSS) on an optical element using a seed layer of material deposited on the surface of the optical element. The seed layer is removed during or after the etching, and serves to control etching time as well as the transmission region of the optical element having ARSS. Optical elements having ARSS on at least one surface are also provided.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: January 25, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Lynda E. Busse, Jesse A. Frantz, Leslie Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Menelaos K. Poutous
  • Patent number: 11163207
    Abstract: A liquid crystal-based non-mechanical beam steering device that permits steering in the mid-wave infrared and has a chalcogenide waveguide. The waveguide core, the subcladding, or both comprise a chalcogenide glass. The liquid crystal-based non-mechanical beam steering device has a tapered subcladding and a liquid crystal layer.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: November 2, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Jason D. Myers, Robel Y. Bekele, Christopher M. Spillmann, Jawad Naciri, Jakub Kolacz, Henry G. Gotjen, Jason Auxier, Leslie Brandon Shaw, Jasbinder S. Sanghera
  • Patent number: 11131898
    Abstract: A graphene and liquid crystal device comprising a substrate, a layer of graphene on the substrate, and a layer of liquid crystal on the layer of graphene. A graphene and liquid crystal device wherein the layer of graphene is an alignment layer and an electrode for a liquid crystal device.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: September 28, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Rajratan Basu, Daniel Kinnamon, Christopher M. Spillmann, Jakub Kolacz, Jesse A. Frantz, Jason D. Myers
  • Publication number: 20210286231
    Abstract: A liquid crystal (LC) beam steerer includes a waveguide apparatus with a waveguide having a high-index core in contact with a variable-index liquid crystal (LC) cladding, wherein a voltage applied to the LC cladding is effective to steer a beam of light passing through the high-index core. Measuring the bulk birefringence and/or the capacitance characteristics of the LC can facilitate beam steering.
    Type: Application
    Filed: September 29, 2020
    Publication date: September 16, 2021
    Inventors: Jakub Kolacz, Henry G. Gotjen, Christopher M. Spillmann, Jawad Naciri, Jason D. Myers, Jesse A. Frantz, Robel Y. Bekele
  • Publication number: 20210255516
    Abstract: A graphene and liquid crystal device comprising a substrate, a layer of graphene on the substrate, and a layer of liquid crystal on the layer of graphene. A graphene and liquid crystal device wherein the layer of graphene is an alignment layer and an electrode for a liquid crystal device.
    Type: Application
    Filed: May 5, 2021
    Publication date: August 19, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Rajratan Basu, Daniel Kinnamon, Christopher M. Spillmann, Jakub Kolacz, Jesse A. Frantz, Jason D. Myers
  • Patent number: 11035984
    Abstract: The invention relates to methods for fabricating antireflective surface structures (ARSS) on an optical element using a three-dimensional film layer applied to the surface of the optical element. The methods beneficially permit materials that do not exhibit local variation in physical and chemical properties to be provided with ARSS. Optical elements having ARSS on at least one surface are also provided.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: June 15, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Lynda E. Busse, L. Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Menelaos K. Poutous
  • Publication number: 20210109256
    Abstract: A method for producing nanostructured, hydrophilic, transmissive, anti-reflective surfaces is described. The method for providing a hydrophilic surface includes steps of providing a substrate that is transmissive in at least one wavelength in the infrared to ultraviolet range of the electromagnetic spectrum and comprises at least one surface including nanostructures of a size smaller than the at least one wavelength; and functionalizing the at least one surface with hydroxyl groups thereon. This method provides devices having excellent transmittance and anti-reflectance properties and which are resistant to seawater.
    Type: Application
    Filed: December 22, 2020
    Publication date: April 15, 2021
    Inventors: Darryl A. Boyd, Jesse A. Frantz, Shyam S. Bayya, Lynda E. Busse, Jasbinder S. Sanghera, Woohong Kim, Ishwar D. Aggarwal
  • Publication number: 20210048561
    Abstract: An antireflection optical element formed from an optical material. The optical material includes a first plurality of antireflective surface structures in the form of first protuberances from the optical material. The first plurality of antireflective surface structures are constructed to aid in transmission of a first wavelength range through the optical material. Also included are a second plurality of antireflective surface structures in the form second protuberances from the first plurality of antireflective surface structures. The second plurality of antireflective surface structures are constructed to aid in transmission a second wavelength range through the optical material. The first wavelength range comprises longer wavelengths than the second wavelength range.
    Type: Application
    Filed: August 14, 2020
    Publication date: February 18, 2021
    Inventors: Lynda E. Busse, Leslie B. Shaw, Jesse A. Frantz, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Patent number: 10915004
    Abstract: An optical system has a beam-steering device, a light source, and a controller that controls the light source to actively control wavelength of the incoming light to control the output angle of the outgoing light output from the BS device. The BS device may have incoupler, waveguide, and/or outcoupler electrodes, and the system may have corresponding controllable voltage supplies actively controlled by the controller to selectively modify electric fields applied to the BS device to control corresponding operating characteristics of the BS device (e.g., in-plane and/or out-of-plane output angles of the outgoing light and/or device incoupling angle). An alternative optical system has a BS device, a detector array that generates detector signals corresponding to outgoing light received from the BS device, and a controller that processes the detector signals to determine one or more wavelengths of the outgoing light.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: February 9, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jason D. Myers, Jesse A. Frantz, Christopher M. Spillmann, Robel Y. Bekele, Henry G. Gotjen, Jawad Naciri, Jakub Kolacz, L. Brandon Shaw, Jasbinder S. Sanghera
  • Patent number: 10884188
    Abstract: A method for creating a random anti-reflective surface structure on an optical fiber including a holder configured to hold the optical fiber comprising a groove and a fiber connector, an adhesive material to hold the optical fiber in the holder and fill any gap between the optical fiber and the holder, a glass to cover the adhesive material and the optical fiber, and a reactive ion etch device. The reactive ion etch device comprises a plasma and is configured to expose an end face of the optical fiber to the plasma. The plasma is configured to etch a random anti-reflective surface structure on the end face of the optical fiber.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: January 5, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Lynda E. Busse, Jason D. Myers, L. Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Catalin M. Florea
  • Publication number: 20200399537
    Abstract: Liquid crystal molecules are described with desirably reduced attenuation in portions of the long-wave infrared (LWIR) spectrum. The molecules include a linear hydrocarbon of varying length (CnH2n+1, where n, for example, is from 4-7), a deuterated phenyl core comprising 2 or 3 rings, and one terminal cyano group. These enable electro-optic such as light modulators, phased arrays, polarization gratings, refractive steerers, and the like, operable at LWIR.
    Type: Application
    Filed: October 30, 2019
    Publication date: December 24, 2020
    Inventors: Jawad Naciri, Christopher M. Spillmann, Jakub Kolacz, Henry G. Gotjen, Jason D. Myers, Jesse A. Frantz, Robel Y. Bekele
  • Publication number: 20200317557
    Abstract: This application relates generally to an optical fiber for the delivery of infrared light where the polarization state of the light entering the fiber is preserved upon exiting the fiber and the related methods for making thereof. The optical fiber has a wavelength between about 0.9 ?m and 15 ?m, comprises at least one infrared-transmitting glass, and has a polarization-maintaining (PM) transverse cross-sectional structure. The infrared-transmitting, polarization-maintaining (IR-PM) optical fiber has a birefringence greater than 10?5 and has applications in dual-use technologies including laser power delivery, sensing and imaging.
    Type: Application
    Filed: April 7, 2020
    Publication date: October 8, 2020
    Inventors: Daniel J. Gibson, Daniel Rhonehouse, Shyam S. Bayya, L. Brandon Shaw, Rafael R. Gattass, Jesse A. Frantz, Jason D. Myers, Woohong Kim, Jasbinder S. Sanghera
  • Publication number: 20200292911
    Abstract: A liquid crystal-based non-mechanical beam steering device that permits steering in the mid-wave infrared and has a chalcogenide waveguide. The waveguide core, the subcladding, or both comprise a chalcogenide glass. The liquid crystal-based non-mechanical beam steering device has a tapered subcladding and a liquid crystal layer.
    Type: Application
    Filed: May 22, 2020
    Publication date: September 17, 2020
    Inventors: Jesse A. Frantz, Jason D. Myers, Robel Y. Bekele, Christopher M. Spillmann, Jawad Naciri, Jakub Kolacz, Henry G. Gotjen, Jason Auxier, Leslie Brandon Shaw, Jasbinder S. Sanghera
  • Publication number: 20200271862
    Abstract: A method for creating a random anti-reflective surface structure on an optical fiber including a holder configured to hold the optical fiber comprising a groove and a fiber connector, an adhesive material to hold the optical fiber in the holder and fill any gap between the optical fiber and the holder, a glass to cover the adhesive material and the optical fiber, and a reactive ion etch device. The reactive ion etch device comprises a plasma and is configured to expose an end face of the optical fiber to the plasma. The plasma is configured to etch a random anti-reflective surface structure on the end face of the optical fiber.
    Type: Application
    Filed: May 14, 2020
    Publication date: August 27, 2020
    Inventors: Jesse A. Frantz, Lynda E. Busse, Jason D. Myers, L. Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Catalin M. Florea
  • Patent number: 10734943
    Abstract: A system for transmitting power to a remote equipment, the system including a first laser source that generates a first laser beam; a first tracking device operatively connected to the first laser source, wherein the first tracking device controls a direction of the first laser beam; and a first photovoltaic device operatively connected to the remote equipment located remotely from the first laser source and the first tracking device, wherein the first photovoltaic device includes a semiconductor material that generates an electric current in response to absorbing the first laser beam, and wherein a first wavelength of the first laser beam is within an eye-safer range.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: August 4, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Jason D. Myers, Steven R. Bowman, L. Brandon Shaw, Jasbinder S. Sanghera